

Irrigated fodder in Ethiopia: Suitability and potential

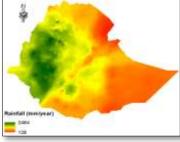
ILSSI/LSIL Webinar, December 02, 2020

BACKGROUND

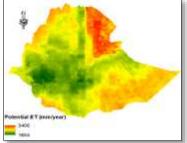
- Agriculture is one of the major drivers of the Ethiopian economy in which **livestock** is an integral part
- Ethiopia has the largest livestock population in Africa but with suboptimal productivity
- Improved fodder production systems can address bottlenecks in feed quantity and quality, and thereby contribute to poverty reduction
- ILSSI has been studying the potential for small scale irrigation to improve fodder production, e.g. Napier (Pennisetum purpureum), alfalfa (Medicago sativa), oats (Avena sativa), vetch (Vicia sativa), and desho (Pennisetum pedicellatum), for poverty reduction and sustainable development.

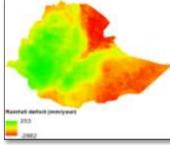
LAND SUITABILITY ANALYSIS

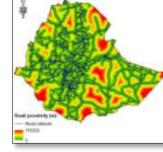
Data	Source	Spatial resolution (m)	MODIS evaporation Climate Road network DEM Livestock population density Land use Soil data Crop characteristics
Soil (texture, depth & pH)	Africa Soil Information Service (AfSIS), 2015	250	
Rainfall (mm/year)	Ethiopian National Meteorological Agency (ENMA) from 1996 to 2010		
MODIS potential evaporation (mm)	MOD16 Global Terrestrial Evapotranspiration Data Set (2000 – 2010)	1,000	Kainfall deficit Distance to road Slope Tropical livestock unit (TLU)
Road network	Ethiopian Road Authority (ERA), 2010		
Livestock population density	Ethiopian Central Statistical Agency (ECSA)	١,000	Reclassified
Digital Elevation Model (DEM)	Enhanced Shuttle Land Elevation Data from United States Geological Survey (USGS), 2000 released in 2015	30	Depth to shallow groundwater borehole yield Overlaying weighted Weighting by
Land use	Global Land Cover Datasets (GlobeLand30)	30	factors pairwise comparison
Groundwater depth (m)	British Geological Survey, 2012	5,000	Preliminary suitability Constraints
Potential borehole yield (l/s)	British Geological Survey, 2012	5,000	Fodder irrigation area suitability map
Fodder crop characteristic s	FAO-EcoCrop database		Groundwater depth (m) Potential borehole yield (l/s) Groundwater depth (m) for fodder irrigation
	BORLAUG ATEXAS AGM RESEARCH THE TEX UNIVERSIT	KAS A&M	NTERNATIONAL FOOD POLICY RESUMED INSTITUTE International Water Management Institute

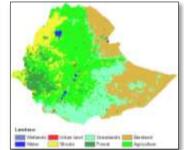

IFPRI[®]

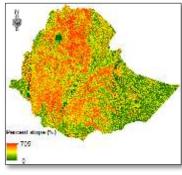
DV:RUCKNERMOP


Management Institute

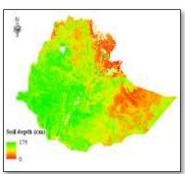

FACTORS CONSIDERED FOR SUITABILITY ANALYSIS

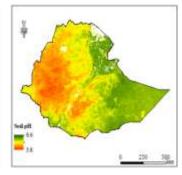

Annual rainfall (mm/year)

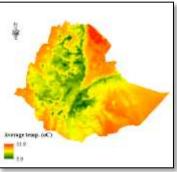

Potential ET (mm/year)


Rainfall deficit (mm/year)


Road proximity



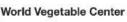

Percent slope

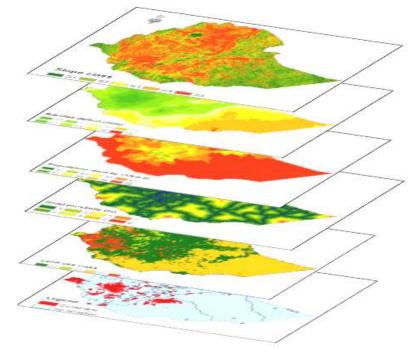

Soil texture

Soil depth (cm)

Soil pH

Average temperature (°C)

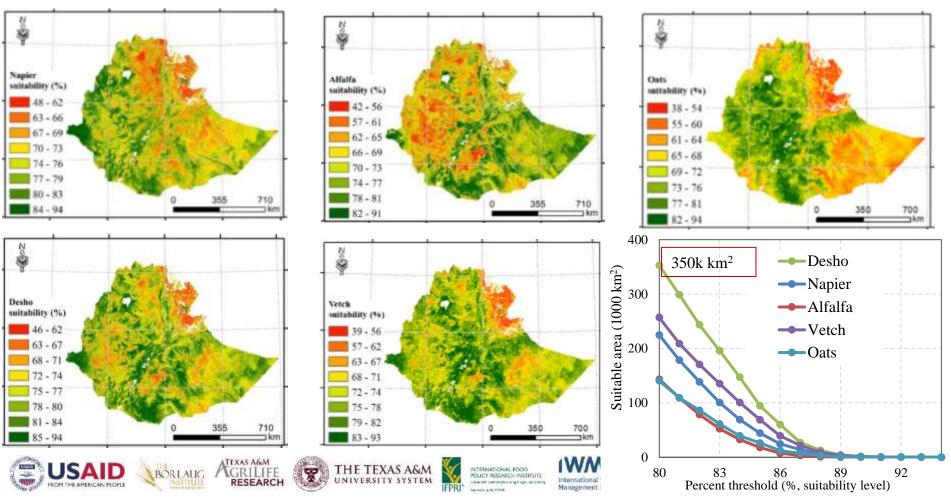




RECLASSIFYING AND OVERLAYING OF FACTORS

- The factors were reclassified into different labels of suitability classes according to FAO framework.
- Weighting of factors: pairwise comparison (Saaty 1977) and
- Overlayed to identify the irrigated fodder suitable area

INTERNATIONAL FOOD POLICY RISEARCH INSTITUTE Instant Intern for ong Factoria General Sectors



SUITABLE LAND FOR IRRIGATED FODDER PRODUCTION

Nearly 20% of the land is suitable for fodder (80% threshold)

USAID

ROM THE AMERICAN PEOPLE

BORLAUG

SUITABLE FODDER PRODUCTION LAND BY BASIN

			Potential growing site (km ²)				
River basin	Basin area (km²)	Napier	Alfalfa	Vetch	Oats	Desho	Total
Abbay	198,891	<u>60,720</u>	9,856	47,897	48,377	66,065	431,80 6
Awash	110,439	14,547	18,813	22,470	10,362	29,377	206,008
Aysha	4321	-	7	2	-	80	4,410
Baro-Akobo	76,203	35,542	6,662	18,958	7,572	31,199	176,136
Afar/Denakil	63,853	1,898	2,889	2,703	346	4,067	75,756
Genale- Dawa	172,133	40,067	43,551	66,648	25,851	77,400	425,650
Mereb	5965	226	215	1,105	509	1,275	9,295
Ogaden	80,009	3,665	14,172	5,636	597	21,887	125,966
Omo-Ghibe	78,189	25,938	6,050	18,168	15,744	24,687	168,776
Rift Valley	51,989	18,937	10,878	23,853	16,946	26,171	148,774
Tekeze	86,455	8,408	3,506	13,440	3,675	19,829	135,313
Wabi- Shebelle	202,219	14,333	26,298	35,517	10,454	49,870	338,691
Total	1,130,666	224,281	142,897	256,397	140,433	351,907	
Percent		20	13	23	12	31	

Abbay River Basin has the largest Napier and Oats production site;

THE TEXAS A&M

Genale-Dawa River Basin has the largest Alfalfa, Vetch and Desho production site;

new on restor fairs of a loss set set

ILRI

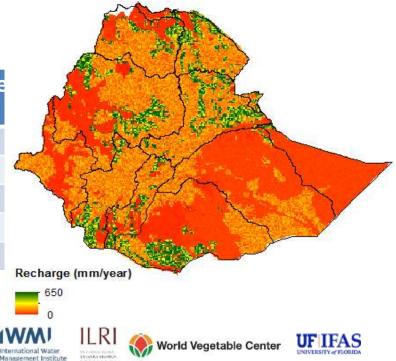
Management Institute

Norld Vegetable Center

UF IFAS

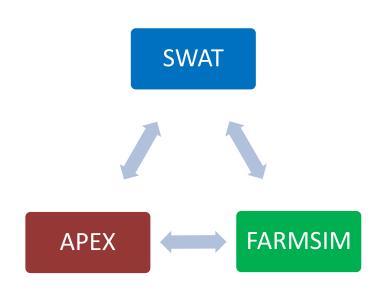
GROUNDWATER IRRIGATION POTENTIAL

- Groundwater data from the British Geological Survey was used to evaluate the groundwater potential.
- In large part of the country, the shallow groundwater is accessible using simple water lifting technologies.


ERNATIONAL FOOD

POLICY RESEARCH INSTITUTE

Groundwater depth and potential borehole yield evaluated for the most suitable land


Fodder crop	Average depth to groundwater (m)	Potential borehole yield (l/s)
Napier	17.1	4.0
Alfalfa	22.3	5.8
Desho	27.4	4.3
Vetch	13.8	4.5
Oats	19.6	3.7

THE TEXAS A&M

INTEGRATED DECISION SUPPORT SYSTEM (IDSS) FRAMEWORK

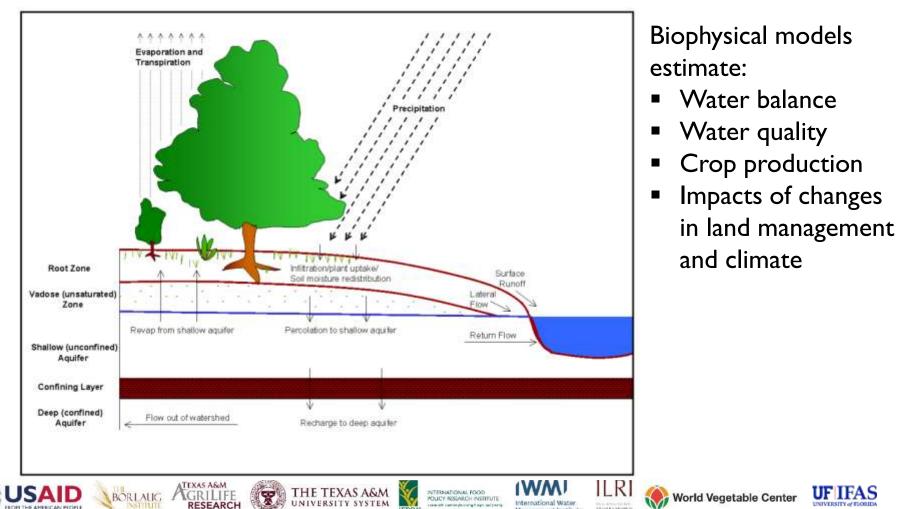
Clarke et al., 2016; Worqlul et al., 2017

THE TEXAS A&M

TERMATIONIAL ECOD

POLICY RESEARCH INSTITUTE

Management Institute


- SWAT model to analyze the biophysical impacts of intensification of the interventions at the watershed scale
- APEX model to analyze cropping systems and to quantify benefits on crop yields
- FARMSIM to assess economic & nutrition impacts of agricultural technologies

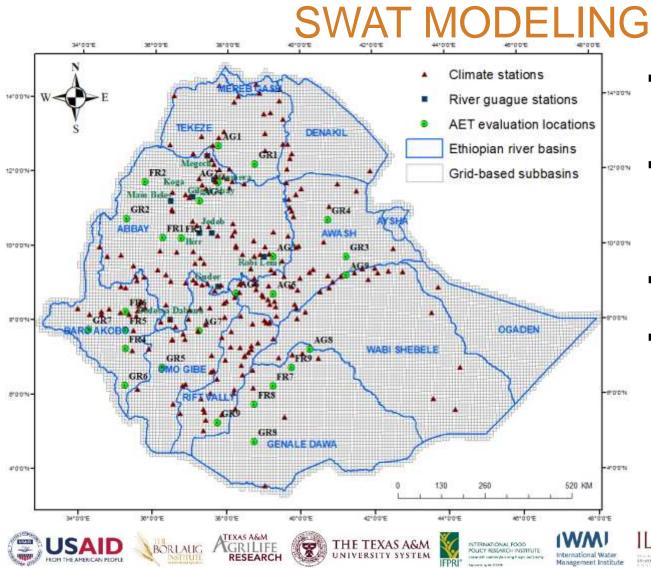
World Vegetable Center

ROM THE AMERICAN PEOPLE

BIOPHYSICAL MODELING

IFPRI'

many of matter factory have set area


General and Print

UN:RUEX MEENO, P

Management Institute

- A 10 km grid-based SWAT model with 14,314 subbasins
- Daily rainfall and temperature data from 240 and 140 stations, respectively
- Fine resolution land use and soil data
- Locally collected field crop management data and data from EIAR, FAO, and partner organizations.

World Vegetable Center

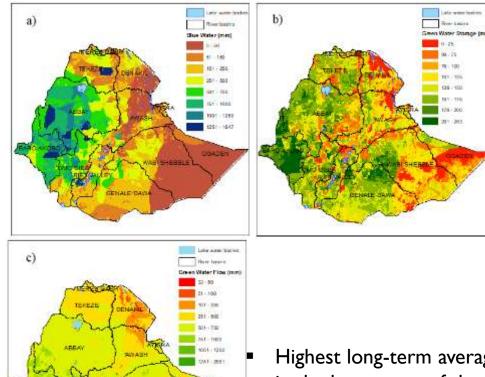
MODEL PERFORMANCE EVALUATION

 Model evaluation during calibration and validation periods based on observed stream flow in multiple stations provided satisfactory model performance.

Station	Area upstream of gauge (km ²)	Calibration	Calibration Validation						
		Period	NSE	KGE	R ²	Period	NSE	KGE	R ²
Gilgel Abay	1700	1983-2000	0.686	0.573	0.767	2001-2008	0.67	0.589	0.396
Koga	200	1993-2000	0.215 (0.577) ^a	0.212 (0.721)	0.213 (0.551)	2001-2012	0.404	0.619	0.474
Gumera	1400	1983-2000	0.677	0.739	0.69	2001-2013	0.722	0.765	0.67
Megech	500	1983-2000	0.499	0.638	0.514	2001-2007	0.522	0.712	0.554
Jedeb	300	1983-2000	0.634	0.534	0.593	2001-2002	0.812	0.588	0.446
Main Beles	3400	1983-2000	0.653	0.66	0.691	2001-2002	0.679	0.659	0.697
Guder	500	1983-2000	0.753	0.687	0.799	2001-2002	0.463	0.456	0.76
Durra	1000	1983-2000	0.664	0.611	0.401	2001-2002	0.81	0.823	0.802
Robi Lemi Jemma	900	1984-2000	0.638	0.487	0.674	2001-2002	0.624	0.163	0.847
Dedessa Dabana nr Dembi	1800	1985-2000	0.731	0.773	0.508	2001-2002	0.347	0.237	0.904

Goodness-of-fit evaluation between averages monthly simulated and observed streamflow using Nash and Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE), and Coefficient of Determination (R2) during the model calibration and validation periods.

Dile et al., 2020



BLUE-GREEN WATER RESOURCES

- High variability in the blue water resource
- Highest blue water in the
 Upper Blue
 Nile, Baro Akobo and
 Omo-Gibe
 basins
- About 25% of the country has long-term average annual **blue water** resource >500 mm.

ENALE DAW

THE TEXAS A&M

UNIVERSITY SYSTEM

SITERNATIONAL ECOD

IFPRI

POLICY RESEARCH INSTITUTE

salar of the second a name is agreed to any

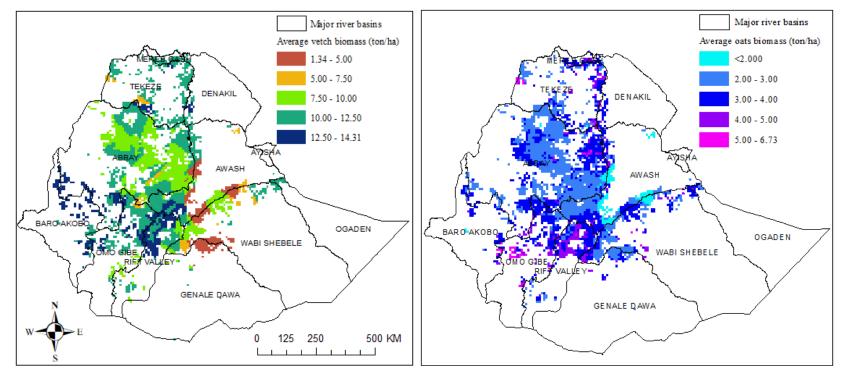
International Water

Management Institute

FEXAS A&M

- Less spatial variability in the green water storage
- Highest green water storage in Baro Akobo, Upper Blue Nile, upper part of Genale and upper part of Wabi Shebele
- About 55% of the country has long-term average annual green water storage of >125 mm.

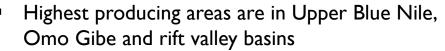
World Vegetable Center


UFIFAS

Highest long-term average **annual green water flow** in the lower part of the Upper Blue Nile, Baro Akobo, Omo-Gibe and Rift Valley basins.

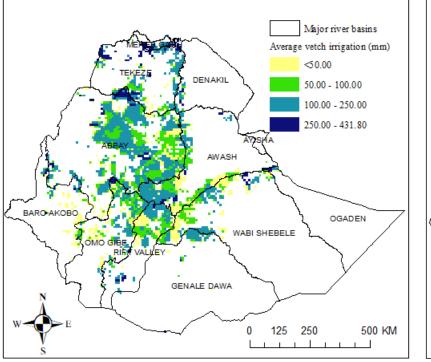
About 57% of the country has green water flow of >500 mm.

DRY SEASON IRRIGATED VETCH & OATS BIOMASS



- Significant production in the Lake Tana, Omo Gibe and Rift Valley basins
- About 87% of the rainfed land can produce >7.5 ton/ha irrigated vetch biomass

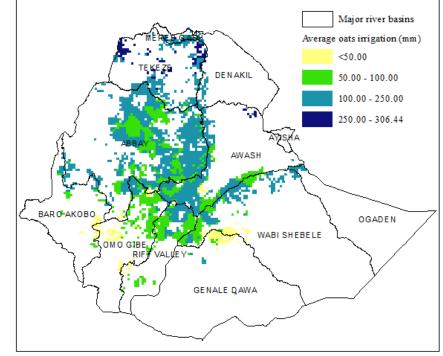
 About 48% of the rainfed land can produce >3 ton/ha irrigated oats biomass



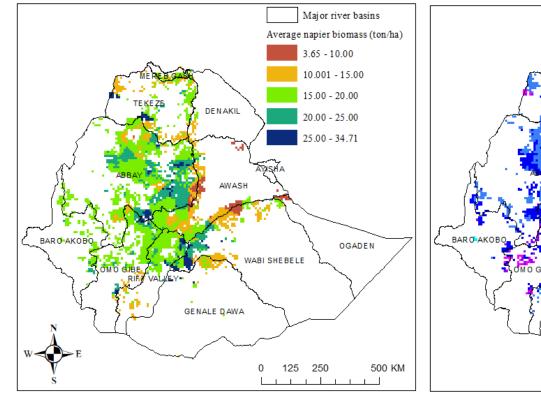
VETCH & OATS IRRIGATION

- Modest amount of irrigation to produce vetch during the dry season
- About 15% of the rainfed agricultural land required <100 mm of irrigation

produce oats


required <100 mm of irrigation

Less amount of irrigation (<307 mm) is required to


About 38% of the rainfed agricultural land

PERENNIAL FODDER: IRRIGATED NAPIER & ALFALFA

- With dry season irrigation and rainfall, up to 34 ton/ha Napier can be produced over the year
- About 75% of the rainfed agricultural land can produce >15 ton/ha Napier

produce >3 ton/ha alfalfa

About 48% of the rainfed agricultural land can

With maintenance irrigation during the dry season,

up to **6.7 ton/ha** alfalfa can be produced over the year

DENAKIL

AWASH

GENALE DAWA

WABI SHEBELE

Major river basins

Average alfalfa biomass (ton/ha)

<2.00

2.00 - 3.00

3 00 - 4 00

4.00 - 5.00

5.00 - 6.73

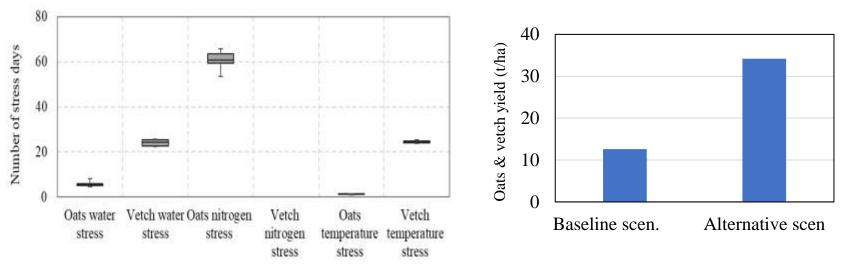
OGADEN

BIOPHYSICAL POTENTIALS REMARKS

- About 20% of Ethiopia's land is suitable for fodder production using surface irrigation
- Substantial amount of water resources available for irrigation in a sustainable way
- Modest amounts of fodder can be produced across the country using reasonable amount of irrigation
- The irrigation water requirement is well below the available bluegreen water resources in the grids

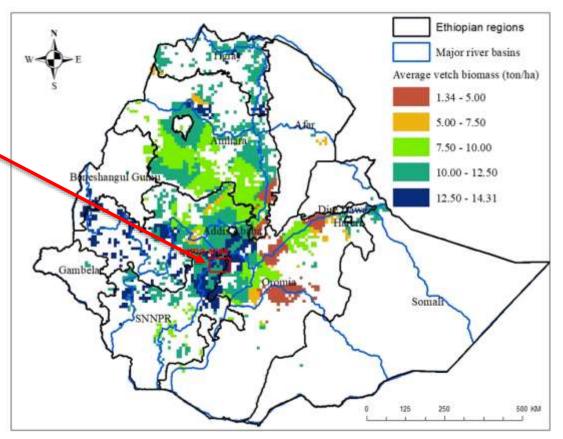


Q & A



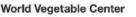
FIELD SCALE FODDER YIELD SIMULATION

- Multiple fodder production sites were established to cultivate fodder crops
- Field data collected was used to setup APEX model to predict fodder yield
- The APEX model was used to evaluate the gaps and constraints of fodder production



IRRIGATED FODDER: IMPACTS ON ECONOMIC AND HUMAN NUTRITION

- Site: Upper Gana kebele (village) in Lemo woreda (district), SNNP region of Ethiopia
- Socio-economic household surveys (IFPRI: 2015; 2017)
- Field studies with local farmers led by Africa RISING, ILRI & IVVMI: 2015-2018



INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE Internet Research Institute I

INCOME & HUMAN NUTRITION MODELING: FARMSIM

- FARMSIM: Monte Carlo farm economic and nutritional simulation model
- Simulate and forecast for 5 years current and alternative farming technologies/scenarios
- Incorporate risk for production and costs to simulate economic and nutritional viability of smallholder farms
- Not an optimization, but a simulation of "What could be if " technology is adopted at different rates
- Key output variables (KOVs): net profit, cost benefit ratio, daily nutrition intake / adult equivalent of calories, fat, proteins, calcium, iron and vitamin A

SCENARIO ANALYSIS

- Baseline: Rain-fed crops + no or minimal irrigation; no supplemental fodder feeding to native cows
- Alt. I--R&W-P N: Rain-fed crops + Rope & Washer pump used in optimally irrigated systems + Supplemental fodder feeding to native cows
- Alt.2--Solar-P N: Rain-fed crops + Solar pump used in optimally irrigated systems + Supplemental fodder feeding to native cows
- Alt.3--Solar-P_CB: Rain-fed crops + Solar pump used in optimally irrigated systems + Supplemental fodder feeding to dairy crossbred cows

INPUT VARIABLES & LIVESTOCK TECHNOLOGIES

	Baseline	Alt. IR&W-P_N	Alt. 2Solar-P_N	Alt. 3Solar-P_CB
Irrigated fodder				
Crop area (ha/household)	0.03	0.13	0.13	0.23
Yield (t/ha)	12.6	34.1	34.1	34.1
Cows / village or kebele				
Native	1102	1102	1102	0
Improved	37	37	37	796
Milk (L) per cow/year	237	640	640	1200
Live weight /bull (gains)	160	212 (52)	212 (52)	212 (52)
ASF Consumption/family	Percent (%)			
Milk by family	70	70	70	70
Milk made into butter	30	30	30	30
Butter consumed	44	34	34	34
Sheep / village or kebele	240	240	240	240
Live weight (kg)/sheep (gains)	34	60 (26)	60 (26)	60 (26)
Fraction consumed/family	0.09	0.09	0.09	0.09

BORLAUG

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE Instant Jakes (providing) Sciences Main Sciences (1997)

World Vegetable Center

KEY ECONOMIC IMPACTS

Economic impacts of adopting livestock technologies in Lemo, SNNP region - Ethiopia

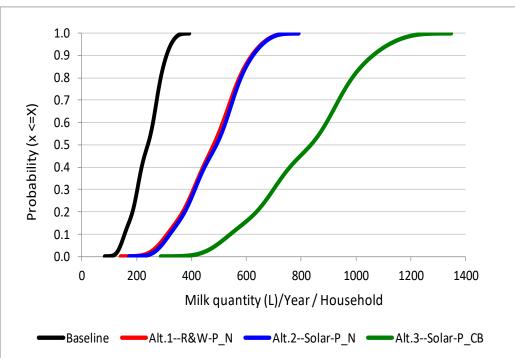
	Baseline	Alt. 1-R&W_N	Alt. 2-Solar_N	Alt. 3-Solar_CB
Economics:	Averages values	s in Birr /family in year 5		
Net present value (5yrs)	119,429	160,237	152,340	140,750
Tot avg. net profit	4,139	7,863	8,233	15,009
% change profit: Alt./Baseline		90%	99%	263%
Benefit-Cost Ratio: Alt/Base		1.9	1	1.2
IRR		0.5	0.1	0.2
Prob BCR>1 (%)		97	50	88
Prob IRR> 0.1 (%)		97.5	50.8	88
Avg. Livestock net profit	3,134	2,833	2,833	3,089

KEY ECONOMIC IMPACTS: RISK?

- I. Alt. I& 2-Native: Risk for loss: 4-6%
- 2. Alt. 3- Crossbred: Risk for loss: 0.2%
- I 2% prob. :profit
 Baseline > Alt. I&2

KEY HUMAN NUTRITION IMPACTS: MILK PRODUCTION

- Feeding native / Baseline: Increase in milk cons (x0.8)
- Feeding crossbred / Baseline: Increase in milk cons (x3.0)
- 3. Increase in Ca
 intake due to milk:
 73-84% under Alt.
 scenarios


TEXAS A&M

THE TEXAS A&M

TERMATIONIAL ECON

POLICY RESEARCH INSTITUTE

Management Institute

World Vegetable Center

KEY HUMAN NUTRITION IMPACTS: NUTRIENTS

Human nutrition impacts of adopting livestock technologies in Lemo, SNNP region - Ethiopia

		Baseline	Alt. 1R&W- P_N	Alt. 2Solar- P_N	Alt. 3Solar- P_CB		nange in t: Base/Alt
Nutrients:	<u>Min req.</u>		Average dail	ly nutrients in yea	<u>ur 5</u>	Base/Alt2	Base/Alt3
Energy (calories/AE)	2,353	2,437	2,608	2,576	2,752	6	13
Proteins (grs/AE)	41.2	69	78	77	80	12	16
Fat (grs/AE)	51	23	31	28	51	24	122
Calcium (grs/AE)	1	0.38	0.67	0.66	0.71	73	84
Iron (grs/AE)	0.009	0.016	0.017	0.017	0.016	5	0
Vitamin A (µg RAE/A	E) 600	825	1,000	961	1,080	17	31

Unit for vitamin A = μg RAE/ AE (RAE: Retinol Activity Equivalent)

SOCIO-ECONOMIC MODELLING REMARKS

- Livestock sector in Ethiopia faces many challenges: low productivity
- Crop and livestock scenarios under alternative farming systems led to improvement in profit and human nutrition compared to the current practices
- Scenario under crossbred cows showed complete alleviation of fat deficit and substantial reduction in available calcium deficit
- Use of improved feed resources and breed (irrigated fodder and crossbred cows) can alleviate some of the production constraints while improving income and human nutrition at household in Lemo

ROLICY RESEARCH INSTITUTE

Q & A

APPROACH FOLLOWED: R4D

- Project sites districts in Amhara and SNNPR states (Bahir Dar zuria, Dangla, Lemo, Angacha)
- Farmer had different levels of SSI experience solely for vegetable and Khat production
- But no prior experience of irrigated fodder

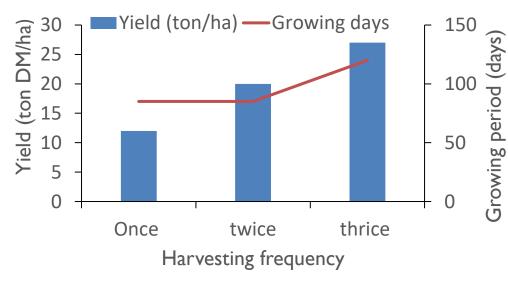
INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

- Initially, involved few farmers (17) willing to allocate land (100 m²) for on-farm trials
- Annual (oat-vetch) and perennial (Napier, Desho, Brachiaria, Desmodium and pigeon pea) forages
- Shallow wells as main source of water
- Pulleys, rope and washer pumps, and solar pumps for water lifting technology.

THE TEXAS A&M UNIVERSITY SYSTEM

POLICY RESEARCH INSTITUTE

Management Institute



World Vegetable Center

Production of high forage biomass of good nutritional quality from small plots

Multi-cut oat-vetch forage

Irrigated Napier forage intercropped with legumes - multiple benefits

- Napier Pigeon pea and Napier-Desmodium combinations produced good results
- Added biomass and quality advantages

THE TEXAS A&M

UNIVERSITY SYSTEM

Pigeon pea grains for human consumption

ERNATIONAL FOOD

Irrigated Napier intercropped with Pigeon pea (PP)

Forage	Average yield (t/ha/lst cut)	Crude protein (%)	IVOMD (%)
Napier sole	3.27	8.3	49.1
Napier + PP I (early	4.88	12.5	51.2
maturing)			
Napier + PP 2 (late	4.34	11.5	51.3
maturing)			

- Yields and protein up by about 40% with Napier pigeon pea combinations
- Improvement in the physical soil structure and fertility

EVIDENCE FROM ON-FARM TRIALS

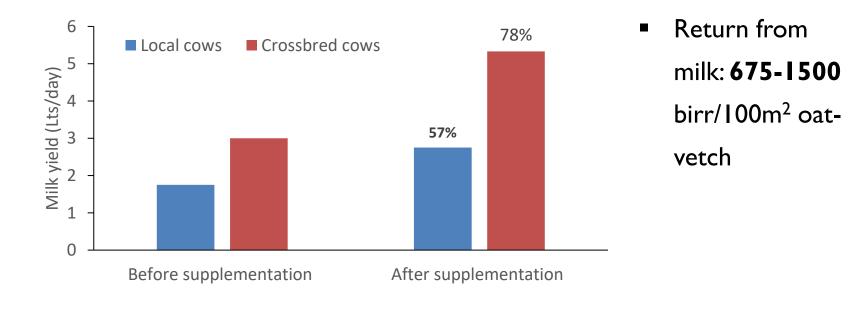
POLICY RESEARCH INSTITUTE

Management Institute

Irrigated Napier income potentials

- Napier could be harvested 6 to 9 times in 12 months
- In a 12-month growing period, a minimum yield of 18 t/ha and a maximum of 23 t/ha dry matter were recorded
- Gross value at ~150k to 200k ETB per ha at fodder markets

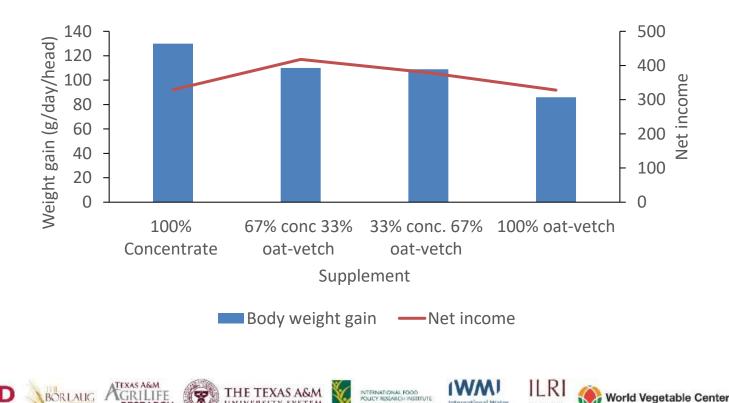
THE TEXAS A&M



World Vegetable Center

EVIDENCE FROM ON-FARM TRIALS

Effect of supplementation of 2 kg oat-vetch hay to lactating local and crossbred cows



EFFECTS OF CONCENTRATES ON SHEEP WEIGHT

Effect of replacing concentrate mixes with oat-vetch forage on weight gain of sheep

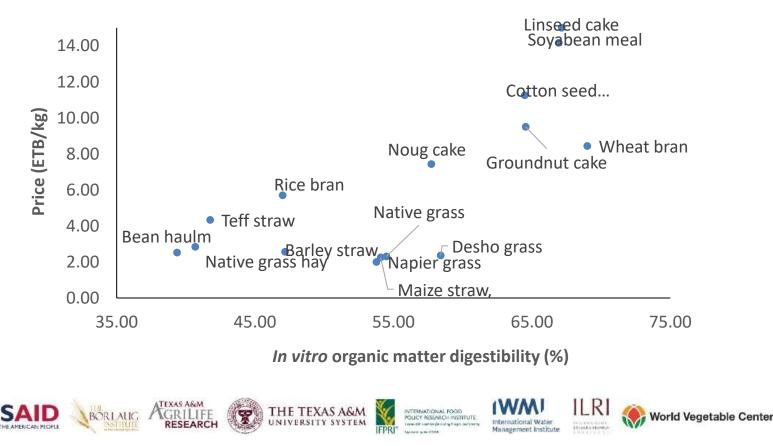
same of station for early happy set on

IFPR

ternational Water

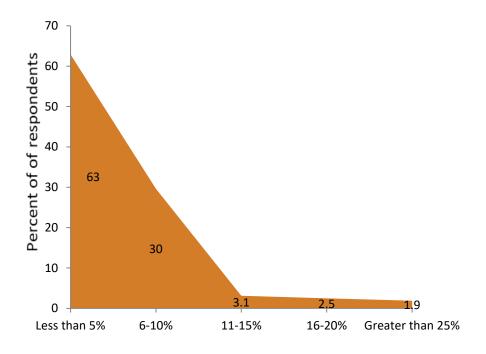
Management Institute

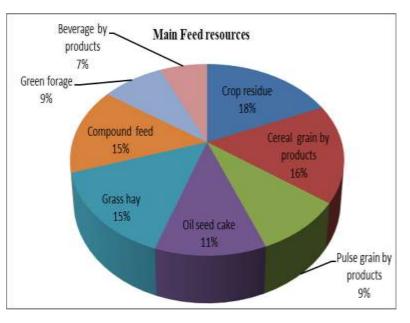
IN:RUCK REENO.


UNIVERSITY SYSTEM

FODDER MARKET SURVEY

Price and quality relationships for a range of Ethiopian feeds





WILLINGNESS TO PAY AND FEEDS PURCHASED

Willingness to pay for better feed quality

INTERNATIONAL FOOD POLICY RISEARCH INSTITUTE Instanti Intern (Income Income Income

ACHIEVEMENTS

- Awareness and interest in irrigated fodder increased
 - Number of farmers engaged
 - Demand for forage planting materials
 - $\,\circ\,$ Demand for irrigation technologies
- Improvement in milk production
 - Revival of dairy cooperatives (milk collection centers

THE TEXAS A&

DUCY RESEARCH INSTITUTE

Irrigated fodder competing with cash crops

fanagement Institute

CHALLENGES AND THE WAY FORWARD

YOLICY RESEARCH INSTITUTE

Challenges

- Dairy producers are primary beneficiaries, but limited access to improved breeds
- Access to forage seeds/planting materials
- Irrigation technologies, and market for farm produce

On-going activities

- Technology packaging
- Strengthening farmer cooperatives to play active roles
- Gender and climate resilience
- Capacity building

World Vegetable Center

CONCLUDING REMARKS

- Allocating land and water exclusively for forage cultivation is a new development in Ethiopia with potential to improve income, nutrition for people and livestock
- Irrigated forage is a viable option and profitable for household level irrigators
- Government policy and incentives support the scaling of small-scale irrigation technologies and fodder is a high potential value chain

YOLICY RESEARCH INSTITUTE

Q & A

