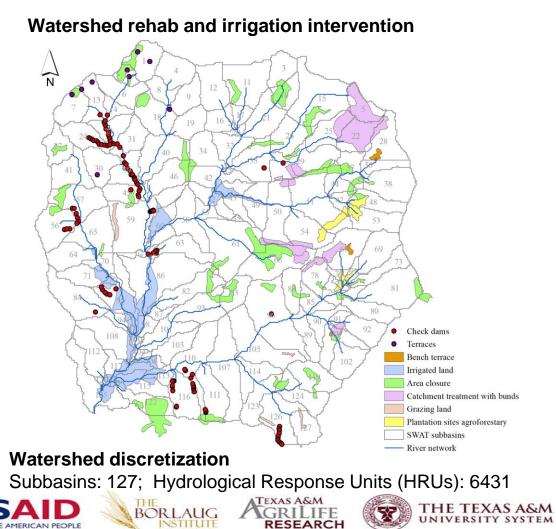

Assessment of watershed rehabilitation and irrigation interventions in USAID Productive Safety Net Program (PSNP) watersheds of Ethiopia

STUDY WATERSHEDS

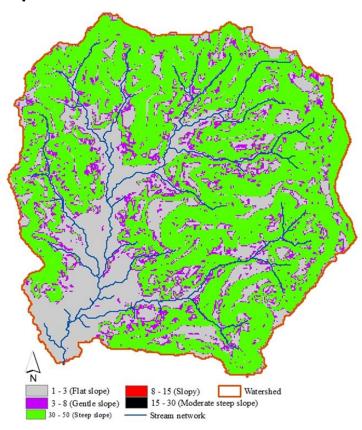
The U.S. Government's Global Hunger & Food Security Initiative	30 S 57	FEED FUTURE
--	---------	-------------

Sno	Watersheds	Area (ha)	Type of Interventions		
Ι	IRelief Society of Tigray (REST)				
1	Feresmay	7662	14		
II	Catholic Relief Services (CRS)				
1	Bereka	484	6		
2	Garalakole	440	4		
3	Didimtu	406	6		
4	Ija Bowa	65	5		
II	World Vision (WV)	_			
1	Laweber	1051	10		
2	Qolaye	770	9		
3	Qedelit	940	11		
4	Rasa Janeta	67764			
5	Goro Gerbi	4853			
6	Garalafto Sororo	3168			
7	Homecho Rehana	27735			
IV	Food for the Hungry (FH)				
1	Zergawido	4843	14		
2	Ganwuha	1900	12		
3	Tilikwenz	2265	8		
4	Muge	8497			
5	Avevet	2664			

LANDSAT IMAGERIES BEFORE AND AFTER THE INTERVENTION (FERESMAY WATERSHED)



Dec 2018 Google Earth

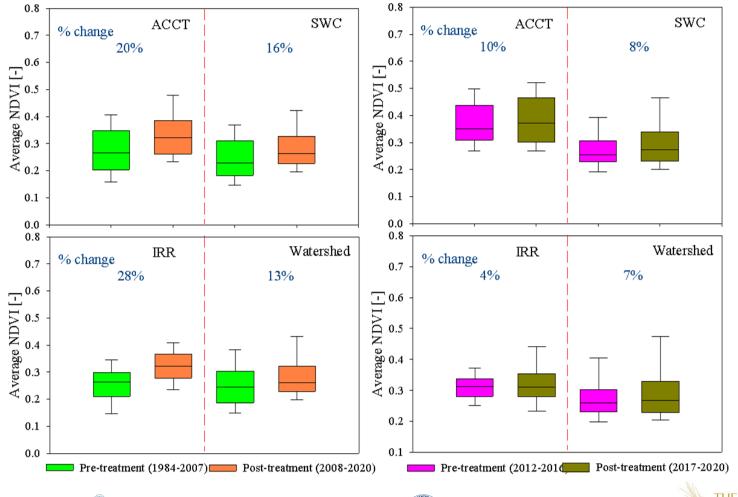

WATERSHED REHABILITATION INTERVENTIONS IN FERESMAY WATERSHED

NSTITUTE

FROM THE AMERICAN PEOPLE

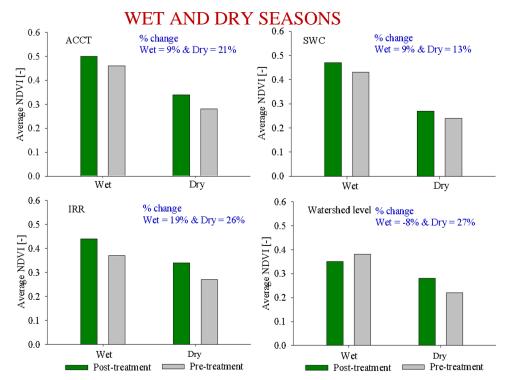
Slope and stream networks

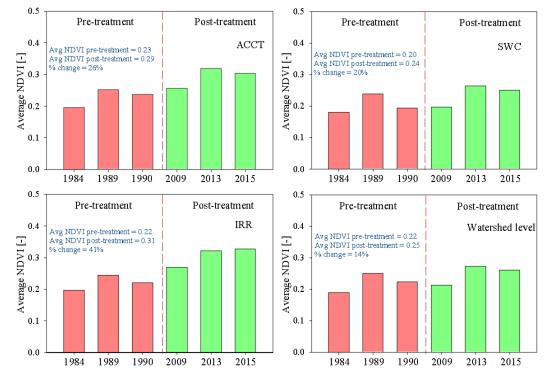
Climatic and biophysical input data **METHODOLOGY** Soil Farm Hvdro-Landsat imageries **Remote sensing** DEM climatic data management type Remote sensing-based vegetation greenness assessment Image preprocessing and enhancement • Before and after intervention analysis Data preprocessing and analysis • First analysis period 2 1984-2007 (before) & 2008-2022 NDVI computation Image classification (after) (1984 - 2020)(supervised) Hydrological modeling (using SWAT) • Second analysis period 2 2012-2016 (before) & 2017-2020 (after) Land use/Land cover • Vegetation enhancement during shock years due to Area average maps 2019 and 2006 NDVI time series interventions SWAT model setup, calibration and validation in the intervention • Drought years 2 Before (1984, 1989, 1990), and after area (2009, 2013 and 2015) Baseline simulation with and without interventions Impacts of interventions on vegetation greenness during wet and dry seasons • Dry season 🛛 Nov – Feb **Evaluation** Change detection analysis (Before and After 2008) • Wet season 🛛 Jun - Sep Soil erosion/Sediment transport - Surface runoff generation Change in greenness Groundwater recharge Annual soil loss **Biophysical modeling (SWAT)** Model setup, calibration and validation Scenario based simulation and potential future watershed Baseline SWAT model simulation for BHA watersheds interventions Model simulation with and with out interventions



BEFORE- AND AFTER-INTERVENTION ANALYSIS (FERESMAY WATERSHED)

- There is improvement in vegetation greenness in the treated area:
 - Post-interventions (2008-2020) compared to preintervention(1984-2007)
 - ACCT and IRR improved the vegetation greenness 20 and 28%
 - Watershed-level analysis revealed an overall improvement in vegetation greenness across the watershed



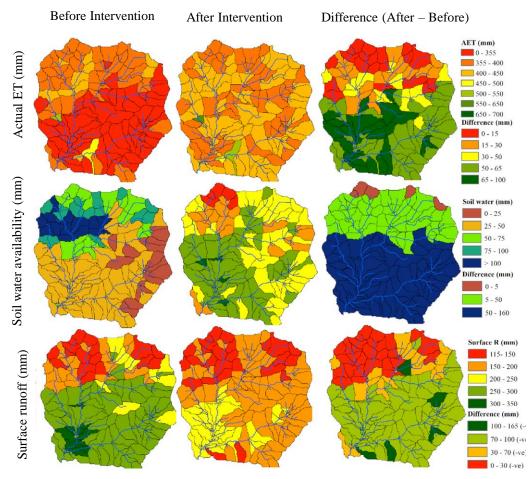


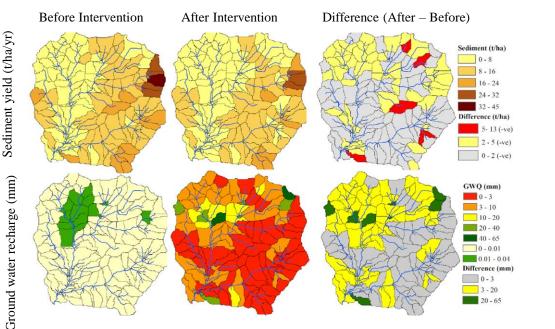
VEGETATION GREENNESS ENHANCEMENT IN FERESEMAY WATERSHED

- Vegetation greenness enhancement during wet and dry seasons
- There is upto 27% change in greenness at watershed scale during dry season

DROUGHT YEARS

• Average percentage change for different treatment ranges b/n 14-41%





WATER BALANCE COMPONENTS BEFORE AND AFTER INTERVENTIONS, FERESMAY WATERSHED

Before intervention period -> 1982-2007 After intervention period -> 2008-2020

- Relatively high actual ET mainly in irrigation intervention area
 Soil water content is also enhanced while surface runoff reduced
- Sediment yield is reduced in some of the subbasins

 Ground water recharge enhanced in Northern and northwest parts of the watershed

SUMMARY

Overall, watershed interventions contributed to:

- Improvement in vegetative greenness and water budget (Actual ET, Surface Runoff, Soil water Availability)
- Pronounced improvement in greenness during the dry season compared to the wet season (most watersheds)
- Enhanced resilience to drought (due to improved water availability)
- Enhancement in actual ET, Soil moisture and groundwater recharge
- Reduced soil erosion and surface runoff losses
- The longer the treatment period, the higher the impact (benefits)
- Recommendation:
- Follow-up research using an integrated approach (remote sensing, biophysical modeling, site observation and measurement, and household economic analysis)

