

Effect of irrigation and fertilizer management on the performance of selected forages

25 Nov 2022 Bahir Dar, Ethiopia

<u>Outline</u>

- Introduction
- Materials and Methods
- Result and discussion
- Conclusion

Introduction and Problem Statement

- Mixed small holder farming system
- Livestock contribution
- Feed shortage
- Pressure on resource
- Water and nutrient as major inputs
- Water-saving for crop production is needed
- Quantifying the crop response to irrigation
- Lack of information on fodder suitability

Materials and Methods

- Robit Bata Kebele
- Rented plot 37.265°E, 11.41 and 1851m
- About 20km north of Bahir town
- Area is about 1034ha
- Has a sub-tropical climate
- Average annual RF of 1500 m
- Temp ranges from 11.6 27.10C
- Mainly irrigated vegetables

Experimental design

• Randomized Split-Split plot design

Replication I		Replication II				Replication III			
12/F3	12/F2	12/F1	13/F2	13/F3	13/F1		11/F2	11/F3	11/F1
V812F3	V212F2	V3 2F1	V10I3F2	V5I3F3	V4I3F1		V6I1F2	V911F3	V1 1F1
V512F3	V10 2F2	V912F1	V8I3F2	V3I3F3	V10I3F1		V7I1F2	V111F3	V5I1F1
V212F3	V612F2	V712F1	V9I3F2	V10I3F3	V8I3F1		V5I1F2	V4I1F3	V3I1F1
V112F3	V3I2F2	V5 2F1	V6I3F2	V7I3F3	V213F1		V9I1F2	V8I1F3	V10I1F1
V712F3	V912F2	V6 2F1	V4I3F2	V1I3F3	V513F1		V3I1F2	V2I1F3	V8I1F1
V1012F3	V512F2	V1 2F1	V2I3F2	V9I3F3	V313F1		V4I1F2	V/I1F3	V6111
V412F3	V812F2	V1012F1	V1I3F2	V4I3F3	V7I3F1		V2I1F2	V6I1F3	V9I1F1
V912F3	V712F2	V812F1	V5I3F2	V6I3F3	V1I3F1		V10I1F2	V3I1F3	V4I1F1
V612F3	V412F2	V2 2F1	 V3I3F2	V8I3F3	V913F1		V1I1F2	V10 1F3	V711F1
V312F3	V112F2	V4 2F1	V7I3F2	V2I3F3	V6I3F1		V8I1F2	V511F3	V2I1F1
11/F2	11/F1	11/F3	12/F1	12/F2	12/F3		13/F1	13/F2	13/F3
V4I1F2	V3I1F1	V1 1F3	V612F1	V712F2	V212F3		V10I3F1	V9I3F2	V8I3F3
V2I1F2	V6I1F1	V4 1F3	V912F1	V3I2F2	V812F3		V7I3F1	V1I3F2	V5I3F3
V8I1F2	V9I1F1	V7 1F3	V112F1	V10I2F2	V612F3	1	V2I3F1	V5I3F2	V4I3F3
V10I1F2	V4I1F1	V811F3	V712F1	V112F2	V512F3		V3I3F1	V2I3F2	V6I3F3
V1I1F2	V10 1F1	V511F3	V312F1	V212F2	V412F3		V9I3F1	V6I3F2	V713F3
V6I1F2	V7I1F1	V911F3	V512F1	V4I2F2	V112F3		V8I3F1	V10 3F2	V2I3F3
V5I1F2	V111F1	V311F3	V212F1	V612F2	V712F3		V4I3F1	V8I3F2	V9I3F3
V7I1E2	V211F1	V6I1E3	V812F1	V912F2	V1012E3		V513F1	V3I3E2	V1I3F3
V9I1F2	V5I1F1	V1011F3	V412F1	V812F2	V312F3		V1I3F1	V7I3F2	V3I3F3
V3I1F2	V8I1F1	V2 1F3	 V10I2F1	V512F2	V912F3		V6I3F1	V4I3F2	V10I3F3
13/F1	13/F3	13/F2	I1/F3	11/F1	11/F2		12/F3	12/F1	12/F2
V113F1	V913F3	V10I3F2	V5I1F3	V6I1F1	V4I1F2		V712F3	V212F1	V3I2F2
V10I3F1	V513F3	V4I3F2	V311F3	V2I1F1	V111F2		V912F3	V812F1	V6I2F2
V8I3F1	V7I3F3	V9 3F2	V2I1F3	V111F1	V5I1F2		V312F3	V612F1	V10I2F2
V213F1	V813F3	V6I3F2	 V7I1F3	V10I1F1	V3I1F2		V112F3	V912F1	V512F2
V4I3F1	V1I3F3	V3I3F2	V911F3	V711F1	V6I1F2		V10I2F3	V512F1	V8I2F2
V3I3F1	V4I3F3	V8I3F2	V111F3	V3I1F1	V2I1F2		V512F3	V712F1	V9I2F2
V913F1	V2I3F3	V5 3F2	V6I1F3	V8I1F1	V7I1F2		V412F3	V10 2F1	V112F2
V7I3F1	V10 3F3	V2I3F2	V8I1F3	V511F1	V911F2		V612F3	V412F1	V212F2
V513F1	V6I3F3	V1I3F2	V4I1F3	V9I1F1	V10I1F2		V812F3	V3I2F1	V712F2
V6I3F1	V3I3F3	V7I3F2	V10I1F3	V4I1F1	V8I1F2		V212F3	V112F1	V4I2F2

- 3 Irrigation Scheduling
 - Based on soil moisture
 - I100, I80 and I60
- 3 different fertilizer rates
 - Manure (30Mg/ha) and
 - UREA 100 and
 300Kg/ha
- 10 forage verities/cultivars
- Plot size 9m²
- A buffer of 1m between plots

Forage variety	Method of planting	Plant spacing	Density/ha
Napier grass (Pennisetum purpureum) 16791	Cuttings	.5 m x .5m	
Napier grass (Pennisetum purpureum) 16819	Cuttings	.5 m x .5m	
Napier grass (Pennisetum purpureum) 16803	Cuttings	.5 m x .5m	
Panicum maximum 144	root splits	.5 m x .5m	
Desho grass (Pennisetum glaucifolium) ArekaDZF590	root s plits	.5 m x .25m	
Brachiaria decumbens 10871	root s plits	.5m x .25m	
Brachiaria mutica 18659	root splits	.5m x .25m	
Desmodium uncinatum 6765 - legume	Seed	.3m b/n rows	6 kg/ha
Stylosanthes hamata 75 - legume	Seed	.3m b/n rows	6 kg/ha
Stylosanthes scabra 140 legume	Seed	.3m b/n rows	6 kg/ha

- The soil moisture content was monitored before irrigation
- Irrigation was scheduled on 7-day intervals (Dadrasan et al. 2015)
- The weekly irrigation water amounts for I100 treatment was estimated based on the equation (Rostamza et al. 2011).

$$I_n = \frac{(Fc - \theta i) * D * A}{100 * \eta}$$

- Each plot was watered individually through a watering can.
- To avoid a runoff after irrigations, both ends of planting rows was blocked by soil.

- During harvest the following measurements was made:
- Total Biomass, plant height, tiller number, leaf to stem ratio, leaf area, root depth, residual soil nitrate
- Fresh and oven-dry (60°C for 48 hours/until constant weight) weight of the stems and leafs.
- These data was then be aggregated for the whole plantbased on the dry matter (DM) proportion

Irrigation water use efficiency (IWUE)

 The IWUE for biomass yield of the various fodder types was determined as:

 $IWUE = \frac{DMY}{Irrigation water applied}$

Data analysis

 To see the effect of irrigation amount and fertilizer type and rate and the interaction effect of irrigation amount and fertilizer rate and type on

✓ biomass and water use efficiency of the various fodder types

- Analysis of variance (ANOVA) was used.
- Mean comparisons was made by the LSD method with P < 0.05.
- The analyses was conducted using SPSS.

Effect of forage type on DMY

- High variability (p<0.001)
- Maximum 83.35 for NG 16791
- Minimum 13.88 for B. Decumbens
- Mean 45.78 t/ha/yr

- ✤ High variability (p<0.01)</p>
- ***** Maximum 10.73 for Desmodium
- ***** Minimum 5.6 for S.Scabra
- ✤ Mean 7.52 t/ha/yr

Effect of fertilizer on DMY

- UREA 300 Kg/ha highest (43.58 t/ha/yr)
- ✤ Manure lowest (26.81 t/ha/yr)

- ✤ Manure (6.42 t/ha/yr) → lowest
- ✤ UREA 100 Kg/ha (8.4) → Highest
- ***** UREA 100 Kg/ha (7.4)

DMY variation by fertilizer (Legumes)

180

CGIAR

Effect of Irrigation on DMY

- No significant effect (p=0.216)
- I100 had highest DMY while I60 yield lowest DM
- I60=8.01,180=9.37 and 1100=9.98 t/ha

Irrigation water requirement by forage type and fertilizer

Effect of irrigation on IWUE

- No significant effect (p=0.401)
- I60 had highest, I100 had lowest WUE

Effect of fertilizer on IWUE

- No significant effect (p=0.253)
- UREA 300 Kg/ha had highest
- UREA 100 Kg/ha had lowest WUE

Effect of forage type on Irrigation water use efficiency

- Significant (p<0.001)
- NG 16791 had highest (4.2) whilst Stylo's had lowest (0.62)

Conclusion

- Full irrigation gave highest DMY but low WUE
- Application of UREA at a rate of 300 Kg/ha had highest DMY and WUE
- Forage type affected both DMY and IWUE
- NG 16791 had the highest DMY and IWUE
- Among grasses B. Decumbens had the lowest DMY and Desho had the lowest IWUE.
- Among legumes Desmodium had the highest DMY and IWUE
- 40 and 20% decrease in irrigation water caused a yield reduction of 24.6% and 6.6% only while increasing the IWUE by 16.65 and 10.7% respectively
- When water is scarce, deficient irrigation can be a good management option

Acknowledgements

- This work is financed by ILSSI project led by ILRI
- It is implemented in a partnership with Bahir Dar university and Andasa livestock research center

Bahir Dar Institute of Technology - Bahir Dar Univ የባሕር ዳር ቴክኖሎጂ ኢንስቲትዩት - ባህር ዳር ዩንቨር

