• Skip to primary navigation
  • Skip to main content
Innovation Lab For Small Scale Irrigation

Innovation Lab For Small Scale Irrigation

Innovation Lab For Small Scale Irrigation

  • Home
  • Countries
    • Ethiopia
    • Ghana
    • Mali
    • Tanzania
  • Focus
    • Water Resources and Climate
    • Nutrition
    • Economic Growth
    • Private Sector
    • Gender and Inclusion
    • Capacity and Engagement
  • Publications
    • Research Briefs
    • Papers and Articles
    • ILSSI Presentations
    • Student Thesis Papers
    • Reports on Stakeholder Engagements
    • IDSS Reports
    • ILSSI Annual Reports
    • ILSSI Data Management
  • News
    • Current News
    • Events
  • About
  • Contact Us
  • Show Search
Hide Search

solar

Coping with climate change: Could irrigation bring relief to Ghana’s parched cocoa sector?

March 11, 2022 by Marianne Gadeberg

In Ghana, the cocoa sector represents 20 to 25 percent of the total export earnings and is an important source of employment and income for about four million households. But in recent decades, dry spells and droughts have challenged cocoa farmers and hampered production.

The Feed the Future Innovation Lab for Small Scale Irrigation (ILSSI) is partnering with the Kwame Nkrumah University of Science and Technology (KNUST) in Ghana to investigate how small scale irrigation practices can help protect Ghana’s cocoa production as climate change impacts intensify in the future.

Increased year-round, long-term productivity

Agriculture in Ghana is mainly rainfed and therefore changes in weather conditions greatly affect the productivity of crops. Over the years, Ghana has recorded wavering trends in cocoa yields, which have been attributed to erratic rainfall, including longer dry spells during the rainy seasons. As a result, farmers’ incomes have dwindled. This is the current status in the cocoa sector, as explained by Janet Afia Boadu, a second-year MPhil Environmental Science student at KNUST, who is collecting data to support the investigation.

“Implementation of irrigation systems could help boost cocoa productivity by increasing yield all year round – and it could support young cocoa plants. Increase in productivity will also improve the livelihoods of farmers by raising their incomes. Finally, irrigation systems have added advantages in that they can help nurture other crops that could be used for shade or food,” said Boadu.

Currently, cocoa production is declining for mature trees, and an estimated 40 percent of new cocoa seedlings die before reaching maturity. While there are three cocoa seasons per year, the output across those seasons remains below potential. Government agencies, research institutions, and private sector actors involved in the cocoa sector are therefore advocating for the use of supplementary irrigation and improved soil and water management for cocoa seedlings, mature trees, and inter-cropping.

To understand how and where irrigation might support the cocoa sector, Boadu’s fieldwork is focused on two aspects:

“I’m using questionnaires to establish baseline conditions, with special emphasis on the livelihoods and agricultural production, in the Ashanti and Western Regions of Ghana. Second, I’m sampling water and soil to analyze the environmental quality that supports their agricultural production to find eco-friendly strategies—for example using recycled agricultural waste—to restore cocoa farms.”

Janet Boadu interviews a cocoa farmer in Ghana’s Western Region. Photo: Prof Tetteh/KNUST.
Janet Boadu and field assistants take sediment samples from a stream near a cocoa farm. Photo: Prof Tetteh/KNUST.

Challenges abound for cocoa farmers

The first, major challenge cocoa farmers face is the lack of irrigation facilities that could help them adapt to climate change effects, according to Dr Isaac K. Tetteh, Associate Professor of Climate (Atmospheric) and Environmental Science at KNUST, who leads the ILSSI-supported KNUST research on cocoa, irrigation, and climate adaptation.

Boadu elaborated by adding that even with irrigation technologies available in the market, farmers are likely to encounter some challenges in developing irrigation on their cocoa farms. For example, farmers still need access to enough, and clean enough, water for irrigation to be a suitable solution. Unregulated, open-pit gold mining is widespread in Ghana, which causes pollution with sediments and chemicals flowing into nearby water bodies in important cocoa-growing areas.

Another challenge is that the installation, repair, and maintenance of an irrigation system – from boreholes to motorized pumps – is expensive, and farmers have limited access to credit, while financial assistance from cocoa-buying companies, governmental and non-governmental agencies is inadequate.

“The maintenance of irrigation system sometimes requires technical know-how that might not be common with farmers and extension officers. This might stifle daily operation and minor maintenance and would affect the effectiveness and durability of the systems,” said Boadu. High-quality irrigation technologies are needed to minimize risks for farmers’ investments in irrigation.

Dr Tetteh also listed high costs of pesticides to control pests and diseases, limited mechanization, low prices, and decreasing availability of land as significant challenges. The lack of access to water may also worsen some of these factors.

“Until the biggest challenges listed are adequately addressed, the future might look bleak, especially for young cocoa farmers,” said Dr Tetteh.

Innovation and research

Strong research collaborations between the departments of the Colleges of Science and Agriculture and Natural Resources at KNUST, the Cocoa Research Institute of Ghana, and international research programs such as ILSSI do exist. It is through these partnerships that innovative research could bring practical solutions to some of these challenges, said Dr Tetteh.

“However, this also calls for funding to ensure quality research, the findings of which can be disseminated to the grassroot level for enhancement of cocoa production,” he emphasized.

Dr Tetteh also highlighted the role of young academics, explaining that mentorship is key for graduate students to become research-oriented, critical thinkers, analytical, problem-solvers, and entrepreneurs:

“The outcome of this research path, especially in the area of science and technology, will surely play significant and complementary roles in addressing some of the major challenges unique to cocoa farmers and bring a new lease of hope to many rural folks whose primary occupation is agriculture.”

For Boadu, her fieldwork so far has already had an impact on her thinking about her future research career:

“I have witnessed rivers and lakes polluted with wastes from mining, and that has really emphasized to me the need for high-quality water resources for irrigation. I’ve gained confidence to explore the various remediation technologies for water and sediments, and I would like to explore and design filters to be installed in irrigation systems to remove pollutants,” she said.

In these ways, partnerships for innovation and research could support farmers in Ghana to overcome climate change challenges, restore their cocoa farms, and secure sustainable livelihoods in the future. These advances not only would secure farmers’ livelihoods now and in the long term, but also enable them to maintain and grow the cocoa sector and its contributions to Ghana’s economy.

Solar-powered irrigation could boost climate resilience for millions

March 10, 2020 by Marianne Gadeberg

Sewagegn, a local smallholder farmer, and Gebeyaw, a data collector, set up Sewagegn's solar powered pump to irrigate her backyard garden in Danghesta, Amhara region of Ethiopia. Photo by Mulugeta Ayene/WLE.
Sewagegn, a local smallholder farmer, and Gebeyaw, a data collector, set up Sewagegn’s solar powered pump to irrigate her backyard garden in Danghesta, Amhara region of Ethiopia. Photo by Mulugeta Ayene/WLE.

The impacts of climate change in sub-Saharan Africa are severe and have far-reaching consequences for millions of smallholder farmers. Rising temperatures, destructive locust swarms, and increasingly erratic rainfall make it difficult for farmers to grow food and meet basic needs.

Expanding small scale irrigation is emerging as part of the solution. When farmers take irrigation into their own hands, they are able to increase production, both by supplementing their rainfed crops with irrigation and by growing an additional harvest during the dry season. Small scale irrigation brings immense benefits, including better nutrition, higher incomes, and greater climate resilience.

Coming up on this year’s World Water Day, which is about water and climate change, we are taking a closer look at what it will take for even more farmers to get started with small scale irrigation.

Putting solar-powered irrigation to the (field) test

During the past few years, ILSSI and its partners, namely the International Water Management Institute (IWMI), have worked with farmers to test a number of small scale irrigation technologies. The researchers looked at how to support farmers to improve agricultural production, water use efficiency, and water productivity, and they addressed challenges related to gender inequality, lack of access to credit, and the technology supply chain.

One thing has become clear: solar-powered pumps can offer an affordable and effective irrigation solution when shallow groundwater or surface water resources are available.

Solar-powered pumps offer opportunities for farmers who are in rural areas without access to electricity. Using solar irrigation lowers costs compared to running petrol-powered pumps, and addresses other constraints related to fuels.

According to a recent report from Dalberg, “These solar water pumps have the potential to reach up to 1.6 million households in sub-Saharan Africa by 2025 and as many as 2.8 million households by 2030—a value of approximately USD 1.6 billion by 2030”. To get the best results for farmers, investments in solar-powered irrigation should be coupled with strengthening agricultural value chains, so that equipment is easily accessible in the market and produce can be off-loaded at attractive prices.

To give guidance on where solar-powered irrigation investments might best be made, IWMI researchers – partially funded by ILSSI and working as part of the CGIAR Research Program on Water, Land and Ecosystems (WLE) – developed a methodology for mapping the suitability of solar irrigation. They have now generated maps for Ethiopia, Mali, and Ghana.

During roundtable meetings organized by ILSSI, private companies have shown interest in using these maps to assess where they could grow the market, based on available resources and infrastructure. Technology supply companies have noted that they have a stake in water resource sustainability, and welcomed maps that considered agro-ecological zones, water resource availability and sustainability, as well as market factors, such as demographics and infrastructure. Companies have an interest in both economic and natural resource sustainability, but often lack the resources to individually develop such complex maps.

Mequanent Tena, 20, works as a data collector at the Qoga site near Bahirdar in Ethiopia. More than 1,068 farmers benefit from the use of Chameleon sensor, an irrigation scheduling tool, which primarily uses color to indicate when farmers have irrigated just the right amount.
Mequanent Tena, 20, works as a data collector at the Qoga site near Bahirdar in Ethiopia. More than 1,068 farmers benefit from the use of Chameleon sensor, an irrigation scheduling tool, which primarily uses color to indicate when farmers have irrigated just the right amount. Maheder Haileselassie/IWMI.

In addition to the solar suitability mapping, IWMI – through ILSSI and the Africa RISING project – have tested irrigation scheduling tools. Introduction of irrigation scheduling has enabled farmers to achieve higher water productivity. Farmers were also able to reduce their labor input by knowing when to use how much water, and that in turn meant they produced more and better crops. While the impact of using the tools varied by country, depending on capacity and information access, evidence suggested that irrigation scheduling tools have the potential to improve farmers’ income and enhance water resource management.

Expanding with the help of private sector and development partners

Two main avenues exist for expanding the use of small scale irrigation. A market-based approach seeks to strengthen the equipment supply chain and connect irrigating farmers to produce markets. Where markets are less developed, or there is a need to support resource-poor farmers, development partners and public institutions are making investments in this field.

Currently, with support from the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), IWMI with Futurepump and partners are scaling out the use of solar suitability maps through an online interactive tool for sub-Saharan Africa. This open access tool, currently in a test phase, can help companies determine where solar pumping would be suitable, thereby reducing the risks they might otherwise face when investing in frontier markets. The tool is currently being evaluated by private sector partners in Ghana, Ethiopia, and Mali.

The tool can also be used by development partners and NGOs to target their interventions and activities in solar-powered irrigation, and it is already in high demand. For example, GIZ found the mapping tool to be a good investment, and the Food and Agricultural Organization (FAO) is requesting national suitability analysis in West Africa to inform their regional programs.

The irrigation scheduling tools have also drawn the attention of development partners. Research under ILSSI and Africa RISING in Ethiopia suggested that farmers learn from these tools – and from each other – influencing when and how much they irrigate. These promising results have spurred other efforts. For example, a larger assessment in Ethiopia to build local communication networks for water user associations (WUA) around ICT and non-ICT based scheduling tools is funded by FAO. Along the same lines, a low-cost irrigation scheduling sensor is currently being considered for scaling in other African countries through the Water Enabler Compact under the Technologies for African Agricultural Transformation program funded by the African Development Bank.

Future efforts toward outcomes

A better understanding of barriers to and opportunities for expanding small scale irrigation is one important outcome of this ongoing research by ILSSI and its partners. These insights have informed private sector companies, donors, and development partners, which are now using ILSSI’s evidence and related tools to guide their investments in irrigation. IWMI, with the support of ILSSI and GIZ, has developed a private sector survey to further identify systemic barriers in irrigation supply chains.

Over the coming years, ILSSI will continue to help along investments in farmer-led irrigation – enabling irrigation investors to scale and expand – thus contributing to greater food production and climate resilience in sub-Saharan Africa.

Partner news: Benefits of farmer-led irrigation are “immense”

March 5, 2020 by Marianne Gadeberg

The following update on the Feed the Future Innovation Lab for Small Scale Irrigation was originally published by agrilinks.org.

Why small-scale irrigation?

In sub-Saharan Africa, scarce and increasingly variable rainfall represents a major risk. It severely impedes agricultural growth, hampers productivity and makes it difficult for farming households to meet basic needs. Investing in sustainable, profitable, and gender-sensitive irrigation can help alleviate these threats, create greater climate resilience, and put millions of farmers on the path toward food and nutrition security.

The Feed the Future Innovation Lab for Small-Scale Irrigation (ILSSI) has become a global leader in generating evidence that can inform investments in support of the U.S. global food security goals. Our focus on small-scale, farmer-led irrigation is a shift from earlier trends in research and investments that focused on public, communal schemes. The performance of such larger irrigation schemes has often been disappointing – partly due to water governance challenges – but when farmers take matters into their own hands and make their own, smaller investments, the benefits of irrigation prove to be immense.

ILSSI has demonstrated that farmers’ own investments hold high potential to increase incomes both for farmers and actors in irrigated value chains, while contributing to agriculture-led economic growth. Research also suggests that households that invest in farmer-led irrigation have better nutritional security. There are multiple pathways between irrigation and nutrition, but farmers often use their increased income to purchase food for a more diverse, and nutritious, diet. Irrigated production also generally increases the availability of vegetables and leafy greens on the local and regional market, thus supporting more nutritious diets not only for farmers themselves, but communities in general. Achieving greater gender equality through irrigation production is also possible, but requires support for empowering women farmers. ILSSI has focused on the value chain for irrigated fodder, which is showing promise, particularly in Ethiopia, to provide animal feed at critical times.

More food and better lives

As men and women farmers make the transition from rainfed to supplemental and dry season irrigated production, ILSSI has tested new tools, technologies and practices to enhance water productivity, boost agricultural yields, improve health and nutrition, strengthen farmers’ resilience and promote gender equality.

  • Conservation agriculture practices and small-scale irrigation can reduce the risks of water scarcity and meet growing food demand. These methods also improve quality and yields of produce at the same time.
  • Solar pumps for water lifting can bring down costs of irrigation for farmers living in rural areas and are a preferred technology for agriculture and domestic uses. ILSSI has supported the development of an open access, interactive tool for solar suitability mapping throughout sub-Saharan Africa, which is now enabling companies to know where solar pumping would be suitable, reducing the risks of investing in frontier markets, and helping NGOs and donors target solar irrigation interventions.
  • Irrigation scheduling tools can enable farmers to achieve higher water productivity and reduce their labor input by showing when to irrigate and how much water to use. Such tools can also increase farmers’ yields and boost the quality of produce. The use of these water-scheduling tools is being taken forward by donors, including in an FAO-funded project with water user associations in Ethiopia, reaching more than 600 farmers.
  • Fodder for livestock can be supported by small-scale irrigation, and it can help farmers diversify their incomes while securing adequate animal-sourced foods, such as milk, for their families. Promising results are drawing the attention of farmers and government officials in Ethiopia.
  • Irrigation can improve nutrition through multiple pathways. ILSSI partners and researchers have been working with the World Bank to support nutrition-sensitive irrigation investments.
  • Improving access to credit would allow even more farmers to benefit from small-scale irrigation. Microfinance options that could support smallholders to access pumps and other equipment do exist, including new ideas such as “Uber for the farm”, but need to be brought to scale.
  • Realizing the full potential of small-scale irrigation in sub-Saharan Africa requires improving gender equality in agriculture. Not only in terms of access to technologies and equipment; it also means ensuring that women can reap the benefits of irrigation.

Taking solutions forward

Building on research from its first phase (2014–2018), ILSSI is now investigating how to feasibly and sustainably expand small-scale irrigation and is directing more resources to improving access and adoption through market systems. ILSSI is partnering with private companies in Ghana and Ethiopia to test ways to build input and output markets around irrigated value chains to establish affordable, reliable supply for example pumps and to foster a viable, healthy market for irrigated crops such as vegetables and seeds. Solar pumps will be a central technology, along with the critical component of appropriate credit and finance – all part of effective and sustainable business models. We are also partnering with small and medium enterprises and cooperatives in Ethiopia to strengthen irrigated fodder production and markets, and examining irrigated seed production for vegetables. Business models that promote gender equity and opportunities for youth are also being sharpened.

Small-scale irrigation technology and water resources may be primarily used for agriculture, but also provide water for consumptive and non-consumptive uses. ILSSI is working with the Household Water Insecurity Experiences network on the effects of water access for productive uses, on domestic and other uses, toward reducing water insecurity. Our focus continues to be farmers’ own irrigation investments, while also deepening our analysis of the changing climate and water-related risks from household to watershed and basin level to increase both environmental and social resilience.

Ethiopian cuisine’s star ingredient provides clues on how to farm in a climate-change era

February 3, 2020 by matt.stellbauer

Using conservation agriculture practices can increase food production while safeguarding water and soil on farms and across drier, hotter landscapes.

This post was first published on agrilinks.org.

Farmers in Danghesta village, Amhara region, Ethiopia, rely on solar-powered small scale irrigation and conservation agriculture techniques to grow onions and other vegetables. Photo by Mulugeta Ayene/WLE.
Farmers in Danghesta village, Amhara region, Ethiopia, rely on solar-powered small scale irrigation and conservation agriculture techniques to grow onions and other vegetables. Photo by Mulugeta Ayene/WLE.

In Ethiopian cuisine, onion rules. Stews, sauces, and salads all rely on onions as a star ingredient, and market stalls are stacked high with fragrant bulbs. Across the country, onions contribute significantly to food security, adding taste and nutrients to diets otherwise mainly made up of cereals.

Despite their popularity, onion crops yield much less in Ethiopia than in other African countries. Farmers here, like elsewhere, use irrigation to cultivate onions. In fact, farmers prefer to irrigate onion more than other crops, thanks to the high demand and high prices for onions. But yields remain low.

Finding out how to increase the yield and quality of onion and other irrigated crops — such as cabbage, tomatoes, and potatoes — is an urgent priority amid a rise in droughts and dry spells. In the past, most Ethiopian farmers have relied on rain to water their crops, but because rainfall has become less reliable, pumping water from shallow groundwater reserves, reservoirs, or streams to water crops is emerging as a necessary alternative.

However, irrigation must be done without reducing water for downstream users or ecosystem services and without causing environmental harm, such as water pollution or excessive soil erosion. Done right, irrigation can enable farmers to grow more nutritious food all year round and provide water for other purposes, such as household and sanitation uses.

To test how to increase onion yield, and at the same time use water and soil most productively, we set up a trial with 34 farmers growing Red Bombay onions in the Dangela administrative district of the Amhara region during the dry season from December 2016 to March 2017. We wanted to find out how using a set of practices known as “conservation agriculture” could improve not only productivity, but also environmental sustainability, incomes, and nutrition.

What is conservation agriculture

On the left, farmers have applied mulch around the onions, one of the conservation agriculture techniques that leads to higher yields and improved water productivity. Photo by Mulugeta Ayene/WLE.
On the left, farmers have applied mulch around the onions, one of the conservation agriculture techniques that leads to higher yields and improved water productivity. Photo by Mulugeta Ayene/WLE.

What we call conservation agriculture is a certain way of farming that is based on three main principles: farmers plough the soil with minimum disturbance, mulch is used to cover the soil between crops, and the kinds of crops grown on a certain plot change every season.

In general, conservation agriculture is expected to increase the yield of vegetable crops. In addition, the practices improve soil quality, including by increasing soil moisture and minimizing the loss of valuable topsoil. Rotating crops between seasons also helps boost soil nutrients. Because moisture is better stored in the soil, the crop’s water use efficiency increases and less irrigation is needed. Finally, because the applied mulch impedes weeds, farmers’ labor burden decreases.

We collaborated with the farmers in the Dangela administrative district of the Amhara region to grow onions using conservation agriculture practices. While we provided seeds, irrigation equipment, and training, the farmers contributed their own land and saw the potential benefits as they emerged. The results were as promising as expected.

A multitude of benefits

Our field data showed that water productivity did indeed improve when farmers started practicing conservation agriculture; they were able to “grow more crop per drop of water”. Also, on average, the new practices increased yields by 35 percent, improved the quality of crops, and boosted farmers’ profitability. 

“The conventional tillage practice needs water every day since the soil dries out quickly, and plants wilt. But plants under conservation agriculture can be irrigated once in two days and do not need lots of work for hoeing and weeding,” said Mr. Girma Yihune, one of the farmers particpating in the trial. “The onion yield, and also the bulb size, is better under conservation agriculture than with conventional tillage. The amount of money made from a small 10 m by 10 m plot was higher than that of rainfed crops like teff and maize. This practice should be promoted to help the community in the area.”

In addition to observing these immediate benefits, we ran a biophysical simulation using our suite of integrated decision support system models to investigate additional effects on water and soil that we could not directly observe.

The results indicated that conservation agriculture also increased soil water availability at the onions’ roots. In cases when the farmers applied excess irrigation water, that water helped to replenish the shallow groundwater aquifer. In addition, the mulch applied by farmers protected the soil from erosion and gradually grew the top layer of organic matter in the soil.

The findings from our study indicate the importance and role of conservation agriculture for sustainable intensification of food production, while maintaining and restoring soil health, using water sustainably, providing weed control, and increasing farmers’ profitability. Conservation agriculture may also reduce greenhouse gas emissions by enabling farmers’ plots to serve as carbon sinks. Furthermore, our modeling indicated that farmers’ increased profit can be used to purchase supplemental foods, mainly animal products such as eggs, meat, and milk products, thus improving the nutritional security of their households.

From farm plots to larger landscapes

The benefits of conservation agriculture are evident and well demonstrated at the field level. What’s more, these benefits can potentially accumulate and expand to the watershed or basin scale. These practices have the potential to both contribute to soil and water conservation and to strengthen the socio-economic well-being of the entire Amhara region and across the Ethiopian Highlands.

Particularly during a time of climate variability and change, conservation agriculture can play an important role in supporting communities who are facing negative effects, such as less rain, higher temperature, and more pests, which are impeding their food production. In this context, conservation agriculture practices in combination with small scale irrigation can offer farmers a viable option for greater, better, and more sustainable production.

To reach the full potential of conservation agriculture in Ethiopia, a shift in mindsets and practices is needed. Encouraging farmers, for example, through stronger extension programs that showcase the benefits of conservation agriculture and explain how to put it into practice is a first step. Continuing collaboration between scientists and farmers can help shed light on what incentives can drive greater adoption of conservation agriculture, eventually informing enabling policies and programs. Working together to explore and fulfill the promises of conservation agriculture, we can enable sustainable food production, not only for individuals farmers, but across entire landscapes.

This post is written by Abeyou W. Worqlul, Manoj K Jha, and Yihun Dile, Feed the Future Innovation Lab for Small Scale Irrigation


  • Compact with Texans
  • Privacy and Security
  • Accessibility Policy
  • State Link Policy
  • Statewide Search
  • Veterans Benefits
  • Military Families
  • Risk, Fraud & Misconduct Hotline
  • Texas Homeland Security
  • Texas Veterans Portal
  • Equal Opportunity
  • Open Records/Public Information
Texas A&M University System Member

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok