• Skip to primary navigation
  • Skip to main content
Innovation Lab For Small Scale Irrigation

Innovation Lab For Small Scale Irrigation

Innovation Lab For Small Scale Irrigation

  • Home
  • Countries
    • Ethiopia
    • Ghana
    • Mali
    • Tanzania
  • Focus
    • Water Resources and Climate
    • Nutrition
    • Economic Growth
    • Private Sector
    • Gender and Inclusion
    • Capacity and Engagement
  • Publications
    • Research Briefs
    • Papers and Articles
    • ILSSI Presentations
    • Student Thesis Papers
    • Reports on Stakeholder Engagements
    • IDSS Reports
    • ILSSI Annual Reports
    • ILSSI Data Management
  • News
    • Current News
    • Events
  • About
  • Contact Us
  • Show Search
Hide Search

water resources

Student interview: Investigating how gender matters for irrigation and nutrition

March 20, 2020 by Marianne Gadeberg

In 2014, Elizabeth Bryan joined ILSSI’s capacity development program for graduate students, and she investigated gender and small scale irrigation, as well as the linkage between irrigation and nutrition. Today, Bryan is a senior scientist in the Environment and Production Technology Division at the International Food Policy Research Institute (IFPRI), where she focuses on water resources management and climate change adaptation and gender.

What issues were you studying, while you were working with ILSSI?

With respect to gender and irrigation, we explored the barriers that women face to adopting, using, and benefitting from technologies for small scale irrigation. We also looked at how adopting small scale irrigation may influence various aspects of women’s empowerment, such as their level of participation in agricultural decisions, control over income and productive assets, and time burden.

Elizabeth Bryan, IFPRI.
Elizabeth Bryan, IFPRI.

The results across the countries we have worked in (Ethiopia, Ghana, and Tanzania) are varied, given different gender roles in agriculture, social norms, and available systems, technologies, and practices for small scale irrigation.

Our findings on irrigation and nutrition highlight two main pathways through which irrigation can improve diets and nutrition outcomes: through changes in production and increased income. Irrigation enables greater production and consumption of more nutrient-dense crops, such as vegetables, that improve diet quality. Being able to irrigate also enables production during the dry season, increasing availability of food during these times. Farmers use the income from selling irrigated crops to purchase foods that improve household diets, such as milk and eggs. Irrigating farmers appear to be more resilient to drought, thanks to their improved nutritional status. Findings on the links between irrigation and nutrition were summarized in a guidance note by The World Bank to support more nutrition-sensitive approaches to irrigation investments.

Gender matters for these linkages between irrigation and nutrition because women have different preferences for which crops are grown under irrigation, how these crops are used – whether for sale or consumption – and how income from the sale of irrigated crops is spent.

What was the most surprising thing you found?

The gender sensitivity of many irrigation interventions is low, meaning that they fail to consider the linkages between gender and irrigation. This is due to limited capacity on gender in many implementing organizations and agencies. However, there is interest, including from the private sector, in utilizing strategies to better reach and benefit women through irrigation.

Another surprising finding is that when households adopt modern irrigation technologies in northern Ghana, men tend to take over irrigation activities. Rather than feeling excluded, many women were relieved not have to participate in manual irrigation, which they considered a burdensome task, and to have more time to devote to other income-earning activities.

How did the work you did with ILSSI inform the next steps in your career? 

After I finish the remaining research papers on my plate, I hope to develop some guidance for implementing partners to adopt more gender-sensitive strategies. New modalities are emerging for how to expand small scale irrigation technologies, such as through group-based or rental arrangements, and the gender implications of these also need to be examined so that these interventions are inclusive and benefit women.

What is your advice to other students looking to work with ILSSI or other Feed the Future innovations labs?

The Feed the Future Innovation Labs are a great way to engage different partners, including cross-disciplinary researchers, development practitioners, policy-makers, and donors. I am grateful to have had the opportunity to collaborate with so many inspiring people, who are dedicated to tackling some of the greatest development challenges.

Scientists and entrepreneurs battle climate change and water scarcity in the Ethiopian Highlands

March 18, 2020 by Marianne Gadeberg

Groundwater comes from the ground, right? Wrong. In the face of growing water scarcity, scientists, entrepreneurs, and farmers turn the problem on its head and increase groundwater reserves through improved water and soil management.

It is no surprise that millions of farmers are facing increasing water scarcity under the current climate crisis. In the Ethiopian Highlands, this reality strikes especially hard when the dry season begins every year in October. As the rain stops, farmers rely on shallow wells to supply them with water for basic household needs, livestock, and irrigation.

Each year, many of these farmers eventually – say, around December – come to discover that their well has run dry. Groundwater reserves have become exhausted before the end of the dry season. These water shortages have serious consequences for the health and welfare of farmers, and reducing water use has been considered the obvious answer. What’s often overlooked is that groundwater availability during the dry season can be boosted if only water and soil are used and managed right during the previous season.

Scientists from the Feed the Future Innovation Lab for Small Scale Irrigation (ILSSI) are looking at rainfall and groundwater as one interconnected system. This shift in thinking opens the door to a new kind of solution, namely to increase the supply of groundwater, in addition to limiting its use when viable. A new plow, developed by an Ethiopian entrepreneur, provides part of the answer.

Plowing at the same depth for centuries creates a hard crust in some soils, hindering groundwater recharge. Petterik Wiggers/IWMI.
Plowing at the same depth for centuries creates a hard crust in some soils, hindering groundwater recharge. Petterik Wiggers/IWMI.

A lifeline during the dry season

Households in Ethiopia’s Highlands rely primarily on shallow wells, up to 25 meters deep, to access groundwater for all uses, according to a survey carried out by graduate students at Bahir Dar University, in partnership with the International Water Management Institute (IWMI).

Being able to rely on wells for year-round access to water is a main coping mechanism for farmers living in a changing climate. This means that communities are left with difficult choices when wells are depleted in the middle of the dry season. What little water might be left in the wells, plus whatever can be carried in from other better-supplied wells, ponds, or rivers, must be used wisely.

When it comes to prioritizing water uses – drinking, washing, watering livestock, and farming – it is often irrigation that loses out, as households have to choose. But, without enough water for irrigation during the dry season, fewer nutritious crops will be available, leaving families hungry and undernourished. Restocking shallow groundwater reserves therefore becomes central to ensuring healthy, viable livelihoods.

A new plow could help

Groundwater reserves are replenished when rainfall infiltrates into the deeper soils. But this natural cycle has been disrupted in the Ethiopian Highlands, where much of the otherwise ample rainfall runs off the sloping hills sides, causing soil erosion and destruction.

For centuries, Ethiopian farmers have used the traditional Maresha plow to till their lands. The problem is that plowing at the same depth for so many years has in some soils formed a hard crust – a hardpan – below the surface. It prevents infiltration of rainwater into the deeper layers of the ground, thus hindering much-needed recharge of groundwater reserves.

The Berken plow, invented by private sector entrepreneur Aybar, is tested. Rudi Schmitter.
The Berken plow, invented by private sector entrepreneur Aybar, is tested. Rudi Schmitter.

Manually breaking up this hard crust can reduce rainwater runoff by more than half, but the work is cumbersome, and without access to suitable machinery, farmers are unlikely to do it. That’s one reason why ILSSI researchers – at IWMI and Bahir Dar University – have collaborated with private entrepreneur Aybar to test a new kind of plow. The Berken plow cuts deeper than the traditional plow, breaking up the hard crust formed in previous years. Emerging research results indicate that the plow conserves soil and water by reducing rainwater runoff and that reduced soil disturbance increases soil moisture.

In other words, using the new Berken plow might increase water stored in soils, helping to recharge groundwater reserves. This would mean that more water would be available for dry season irrigation, and for supplementary irrigation in the rainy season, thanks in part to a private sector innovation.

Limited groundwater on the slopes of the highlands

Restocking groundwater reserves where possible, using tools such as the Berken plow, is not in and of itself sufficient to ensure that farmers have enough water to irrigate their fields. In the Ethiopian Highlands, sloping hills represent a particular challenge.

ILSSI researchers, with partners, have discovered that groundwater reserves are rapidly diminishing in the highlands throughout the dry season because it migrates away from the hillside through the soil. Because gravity pulls groundwater away from the hillsides, sloping lands can only provide significant irrigation inputs during the first three months out of the eight months long dry season, their research showed. In the remaining part of the dry season period, only wells located at the bottom of the slopes, close to faults, contained water.

These results were obtained in a study of the Robit Bata watershed in Ethiopia’s Lake Tana basin, where almost half the area is made up of slopes above 10 percent, which is representative of watersheds in the highlands of Ethiopia. This limited availability of groundwater on the slopes highlight that when planning for small scale irrigation, it is not enough to consider the groundwater recharge only and ignore the lateral movement of water. If the lateral flow of groundwater away from hillsides is not considered, any estimated irrigation potential will be unrealistic in actual practice.

Therefore, introducing conservation agriculture and best farming practices could help farmers grow more crops, even as shallow groundwater travels downhill. Researchers from Bahir Dar University have shown that the combination of best irrigation practices and conservation agriculture helps limit the amount of moisture that evaporates from the soil, thus increasing soil moisture and crop productivity.

Mulching between crops is one characteristic of conservation agriculture. Mulugeta Ayene/WLE.
Mulching between crops is one characteristic of conservation agriculture. Mulugeta Ayene/WLE.

Better water management for climate resilience

The biggest lesson for farmers and decision-makers alike is that groundwater and rainfall are closely interlinked. Private sector innovations and improved farming practices can help farmers manage water as one system – recharging groundwater as much as possible, in addition to using available water as best as possible. Improving management of rain- and groundwater, by understanding that the two make up one interlinked resource, is a critical climate adaptation strategy.

Four papers on water and climate change impacts in Ethiopia and Ghana

March 17, 2020 by Marianne Gadeberg

Four recent publications from the Feed the Future Innovation Lab for Small Scale Irrigation (ILSSI) investigate how climate change is likely to affect water availability in the future. All four papers present results that suggest needs to put in place measures to adapt to and mitigate risks of plausible climate change.

Gebrekidan Worku, Ermias Teferi, Amare Bantider, Yihun T. Dile. 2019. Observed changes in extremes of daily rainfall and temperature in Jemma subbasin, Upper Blue Nile basin, Ethiopia

ILSSI scientists have been supervising a graduate student from Addis Ababa University who analyzed observed extreme rainfall and temperature in the Jemma subbasin of the Upper Blue Nile basin in Ethiopia. The analysis used data for the period 1981 to 2014. Results showed an increasing trend of annual and summer rainfall and a decreasing trend of spring rainfall in most parts of the subbasin. An increase in rainfall and extreme temperature events was also observed. The study recommends appropriate water management interventions to adapt to and mitigate risks associated with the observed changes in rainfall and temperature.

Download paper

Gebrekidan Worku, Ermias Teferi, Amare Bantider, Yihun T. Dile. 2020. Statistical bias correction of regional climate model simulations for climate change projection in the Jemma subbasin, Upper Blue Nile Basin of Ethiopia

One of the challenges in climate change studies is selecting the right type of bias correction methods. Biases are systematic errors, either decreases or increases, in actual observations or estimates in climate data. This study, applying several statistical matrices, found that the distribution mapping technique was better for correcting biases than other methods. Distribution mapping is a distribution-based approach that corrects the mean, standard deviation, and extremes and distribution of rainfall and temperature events of climate model outputs. The distribution mapping was applied to bias correct the future (2021–2100) simulation of Regional Climate Models, which showed a decline of rainfall and an increase of temperature as well as of extreme rainfall and temperature events in each of the Intergovernmental Panel for Climate Change (IPCC)’s three scenarios for plausible future greenhouse gas emissions trajectories.

Download paper

Abeyou Wale Worqlul, Yihun Taddele Dile, Essayas Kaba Ayana, Jaehak Jeong, Anwar Assefa Adem, Thomas Gerik. 2018. Impact of climate change on streamflow hydrology in headwater catchments of the Upper Blue Nile basin, Ethiopia.

In this study, ILSSI researchers assessed the impact of climate change on water availability and variability in two subbasins in the Upper Blue Nile basin of Ethiopia. An emission scenario representing the baseline period (1961–1990) was used to predict future climate and as input to a hydrologic model to estimate the impact of future climate on the flow of water in the two rivers in three future time horizons: 2020–2045, 2045–2070, and 2070–2100. Daily maximum/minimum temperatures are expected to increase throughout the future time horizons. The minimum and maximum temperature will increase by 3.6 °C and 2.4 °C, respectively, toward the end of the 21st century. Consequently, potential evapotranspiration is also expected to increase by 7.8%. The increase in evapotranspiration suggests increased crop water requirement in future crop production, which must be taken into account when planning future irrigation infrastructure. A notable seasonality was found in the rainfall pattern, such that dry season rainfall amounts are likely to increase and wet season rainfall to decrease. The hydrological model indicated that the local hydrology of the study watersheds will be significantly influenced by climate change. Overall, at the end of the century, water flow will increase in both rivers by up to 64% in dry seasons and decrease by 19% in wet seasons.

Download paper

Abeyou W. Worqlul, Yihun T. Dile, Jaehak Jeong, Zenebe Adimassu, Nicole Lefore, Thomas Gerik, Raghavan Srinivasan, Neville Clarke. 2019. Effect of climate change on land suitability for surface irrigation and irrigation potential of the shallow groundwater in Ghana. 

ILSSI researchers applied a GIS-based Multi-Criteria Evaluation (MCE) technique to evaluate the suitability of land for irrigation in Ghana for a baseline period (1990–2010) and future time horizons, namely the 2050s (2041 to 2060) and the 2070s (2061 to 2080). Model results suggest that due to climate change, on average, rainfall will increase by 15 mm in the 2050s and 20 mm in 2070s, compared to the baseline period. Results on average temperature show a consistent increase across most of Ghana, which will increase potential evapotranspiration by 6.0% and 7.6% in the 2050s and 2070s, respectively. As a result of these changes to rainfall and temperatures, 9.5% of the current land area that is suitable for irrigation will become unfavorable for irrigation in 2050s, and may continue to become unfavorable in the 2070s, reducing land suitable for irrigation by 17%.

Download paper

Solar-powered irrigation could boost climate resilience for millions

March 10, 2020 by Marianne Gadeberg

Sewagegn, a local smallholder farmer, and Gebeyaw, a data collector, set up Sewagegn's solar powered pump to irrigate her backyard garden in Danghesta, Amhara region of Ethiopia. Photo by Mulugeta Ayene/WLE.
Sewagegn, a local smallholder farmer, and Gebeyaw, a data collector, set up Sewagegn’s solar powered pump to irrigate her backyard garden in Danghesta, Amhara region of Ethiopia. Photo by Mulugeta Ayene/WLE.

The impacts of climate change in sub-Saharan Africa are severe and have far-reaching consequences for millions of smallholder farmers. Rising temperatures, destructive locust swarms, and increasingly erratic rainfall make it difficult for farmers to grow food and meet basic needs.

Expanding small scale irrigation is emerging as part of the solution. When farmers take irrigation into their own hands, they are able to increase production, both by supplementing their rainfed crops with irrigation and by growing an additional harvest during the dry season. Small scale irrigation brings immense benefits, including better nutrition, higher incomes, and greater climate resilience.

Coming up on this year’s World Water Day, which is about water and climate change, we are taking a closer look at what it will take for even more farmers to get started with small scale irrigation.

Putting solar-powered irrigation to the (field) test

During the past few years, ILSSI and its partners, namely the International Water Management Institute (IWMI), have worked with farmers to test a number of small scale irrigation technologies. The researchers looked at how to support farmers to improve agricultural production, water use efficiency, and water productivity, and they addressed challenges related to gender inequality, lack of access to credit, and the technology supply chain.

One thing has become clear: solar-powered pumps can offer an affordable and effective irrigation solution when shallow groundwater or surface water resources are available.

Solar-powered pumps offer opportunities for farmers who are in rural areas without access to electricity. Using solar irrigation lowers costs compared to running petrol-powered pumps, and addresses other constraints related to fuels.

According to a recent report from Dalberg, “These solar water pumps have the potential to reach up to 1.6 million households in sub-Saharan Africa by 2025 and as many as 2.8 million households by 2030—a value of approximately USD 1.6 billion by 2030”. To get the best results for farmers, investments in solar-powered irrigation should be coupled with strengthening agricultural value chains, so that equipment is easily accessible in the market and produce can be off-loaded at attractive prices.

To give guidance on where solar-powered irrigation investments might best be made, IWMI researchers – partially funded by ILSSI and working as part of the CGIAR Research Program on Water, Land and Ecosystems (WLE) – developed a methodology for mapping the suitability of solar irrigation. They have now generated maps for Ethiopia, Mali, and Ghana.

During roundtable meetings organized by ILSSI, private companies have shown interest in using these maps to assess where they could grow the market, based on available resources and infrastructure. Technology supply companies have noted that they have a stake in water resource sustainability, and welcomed maps that considered agro-ecological zones, water resource availability and sustainability, as well as market factors, such as demographics and infrastructure. Companies have an interest in both economic and natural resource sustainability, but often lack the resources to individually develop such complex maps.

Mequanent Tena, 20, works as a data collector at the Qoga site near Bahirdar in Ethiopia. More than 1,068 farmers benefit from the use of Chameleon sensor, an irrigation scheduling tool, which primarily uses color to indicate when farmers have irrigated just the right amount.
Mequanent Tena, 20, works as a data collector at the Qoga site near Bahirdar in Ethiopia. More than 1,068 farmers benefit from the use of Chameleon sensor, an irrigation scheduling tool, which primarily uses color to indicate when farmers have irrigated just the right amount. Maheder Haileselassie/IWMI.

In addition to the solar suitability mapping, IWMI – through ILSSI and the Africa RISING project – have tested irrigation scheduling tools. Introduction of irrigation scheduling has enabled farmers to achieve higher water productivity. Farmers were also able to reduce their labor input by knowing when to use how much water, and that in turn meant they produced more and better crops. While the impact of using the tools varied by country, depending on capacity and information access, evidence suggested that irrigation scheduling tools have the potential to improve farmers’ income and enhance water resource management.

Expanding with the help of private sector and development partners

Two main avenues exist for expanding the use of small scale irrigation. A market-based approach seeks to strengthen the equipment supply chain and connect irrigating farmers to produce markets. Where markets are less developed, or there is a need to support resource-poor farmers, development partners and public institutions are making investments in this field.

Currently, with support from the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), IWMI with Futurepump and partners are scaling out the use of solar suitability maps through an online interactive tool for sub-Saharan Africa. This open access tool, currently in a test phase, can help companies determine where solar pumping would be suitable, thereby reducing the risks they might otherwise face when investing in frontier markets. The tool is currently being evaluated by private sector partners in Ghana, Ethiopia, and Mali.

The tool can also be used by development partners and NGOs to target their interventions and activities in solar-powered irrigation, and it is already in high demand. For example, GIZ found the mapping tool to be a good investment, and the Food and Agricultural Organization (FAO) is requesting national suitability analysis in West Africa to inform their regional programs.

The irrigation scheduling tools have also drawn the attention of development partners. Research under ILSSI and Africa RISING in Ethiopia suggested that farmers learn from these tools – and from each other – influencing when and how much they irrigate. These promising results have spurred other efforts. For example, a larger assessment in Ethiopia to build local communication networks for water user associations (WUA) around ICT and non-ICT based scheduling tools is funded by FAO. Along the same lines, a low-cost irrigation scheduling sensor is currently being considered for scaling in other African countries through the Water Enabler Compact under the Technologies for African Agricultural Transformation program funded by the African Development Bank.

Future efforts toward outcomes

A better understanding of barriers to and opportunities for expanding small scale irrigation is one important outcome of this ongoing research by ILSSI and its partners. These insights have informed private sector companies, donors, and development partners, which are now using ILSSI’s evidence and related tools to guide their investments in irrigation. IWMI, with the support of ILSSI and GIZ, has developed a private sector survey to further identify systemic barriers in irrigation supply chains.

Over the coming years, ILSSI will continue to help along investments in farmer-led irrigation – enabling irrigation investors to scale and expand – thus contributing to greater food production and climate resilience in sub-Saharan Africa.

Partner news: Benefits of farmer-led irrigation are “immense”

March 5, 2020 by Marianne Gadeberg

The following update on the Feed the Future Innovation Lab for Small Scale Irrigation was originally published by agrilinks.org.

Why small-scale irrigation?

In sub-Saharan Africa, scarce and increasingly variable rainfall represents a major risk. It severely impedes agricultural growth, hampers productivity and makes it difficult for farming households to meet basic needs. Investing in sustainable, profitable, and gender-sensitive irrigation can help alleviate these threats, create greater climate resilience, and put millions of farmers on the path toward food and nutrition security.

The Feed the Future Innovation Lab for Small-Scale Irrigation (ILSSI) has become a global leader in generating evidence that can inform investments in support of the U.S. global food security goals. Our focus on small-scale, farmer-led irrigation is a shift from earlier trends in research and investments that focused on public, communal schemes. The performance of such larger irrigation schemes has often been disappointing – partly due to water governance challenges – but when farmers take matters into their own hands and make their own, smaller investments, the benefits of irrigation prove to be immense.

ILSSI has demonstrated that farmers’ own investments hold high potential to increase incomes both for farmers and actors in irrigated value chains, while contributing to agriculture-led economic growth. Research also suggests that households that invest in farmer-led irrigation have better nutritional security. There are multiple pathways between irrigation and nutrition, but farmers often use their increased income to purchase food for a more diverse, and nutritious, diet. Irrigated production also generally increases the availability of vegetables and leafy greens on the local and regional market, thus supporting more nutritious diets not only for farmers themselves, but communities in general. Achieving greater gender equality through irrigation production is also possible, but requires support for empowering women farmers. ILSSI has focused on the value chain for irrigated fodder, which is showing promise, particularly in Ethiopia, to provide animal feed at critical times.

More food and better lives

As men and women farmers make the transition from rainfed to supplemental and dry season irrigated production, ILSSI has tested new tools, technologies and practices to enhance water productivity, boost agricultural yields, improve health and nutrition, strengthen farmers’ resilience and promote gender equality.

  • Conservation agriculture practices and small-scale irrigation can reduce the risks of water scarcity and meet growing food demand. These methods also improve quality and yields of produce at the same time.
  • Solar pumps for water lifting can bring down costs of irrigation for farmers living in rural areas and are a preferred technology for agriculture and domestic uses. ILSSI has supported the development of an open access, interactive tool for solar suitability mapping throughout sub-Saharan Africa, which is now enabling companies to know where solar pumping would be suitable, reducing the risks of investing in frontier markets, and helping NGOs and donors target solar irrigation interventions.
  • Irrigation scheduling tools can enable farmers to achieve higher water productivity and reduce their labor input by showing when to irrigate and how much water to use. Such tools can also increase farmers’ yields and boost the quality of produce. The use of these water-scheduling tools is being taken forward by donors, including in an FAO-funded project with water user associations in Ethiopia, reaching more than 600 farmers.
  • Fodder for livestock can be supported by small-scale irrigation, and it can help farmers diversify their incomes while securing adequate animal-sourced foods, such as milk, for their families. Promising results are drawing the attention of farmers and government officials in Ethiopia.
  • Irrigation can improve nutrition through multiple pathways. ILSSI partners and researchers have been working with the World Bank to support nutrition-sensitive irrigation investments.
  • Improving access to credit would allow even more farmers to benefit from small-scale irrigation. Microfinance options that could support smallholders to access pumps and other equipment do exist, including new ideas such as “Uber for the farm”, but need to be brought to scale.
  • Realizing the full potential of small-scale irrigation in sub-Saharan Africa requires improving gender equality in agriculture. Not only in terms of access to technologies and equipment; it also means ensuring that women can reap the benefits of irrigation.

Taking solutions forward

Building on research from its first phase (2014–2018), ILSSI is now investigating how to feasibly and sustainably expand small-scale irrigation and is directing more resources to improving access and adoption through market systems. ILSSI is partnering with private companies in Ghana and Ethiopia to test ways to build input and output markets around irrigated value chains to establish affordable, reliable supply for example pumps and to foster a viable, healthy market for irrigated crops such as vegetables and seeds. Solar pumps will be a central technology, along with the critical component of appropriate credit and finance – all part of effective and sustainable business models. We are also partnering with small and medium enterprises and cooperatives in Ethiopia to strengthen irrigated fodder production and markets, and examining irrigated seed production for vegetables. Business models that promote gender equity and opportunities for youth are also being sharpened.

Small-scale irrigation technology and water resources may be primarily used for agriculture, but also provide water for consumptive and non-consumptive uses. ILSSI is working with the Household Water Insecurity Experiences network on the effects of water access for productive uses, on domestic and other uses, toward reducing water insecurity. Our focus continues to be farmers’ own irrigation investments, while also deepening our analysis of the changing climate and water-related risks from household to watershed and basin level to increase both environmental and social resilience.

  • « Go to Previous Page
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Go to Next Page »

  • Compact with Texans
  • Privacy and Security
  • Accessibility Policy
  • State Link Policy
  • Statewide Search
  • Veterans Benefits
  • Military Families
  • Risk, Fraud & Misconduct Hotline
  • Texas Homeland Security
  • Texas Veterans Portal
  • Equal Opportunity
  • Open Records/Public Information
Texas A&M University System Member

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok